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When large, discrete technological improvements require the accumulation of
research or infrastructural investment over time, growth paths display cyclical
patterns even in the absence of any shocks. Particularly interesting equilibrium
features of these cycles include declines in output and asymmetries in the cyclic
patterns displayed during expansions and recessions. Journal of Economic Literature
Classification Numbers: E22, E32, O41. Q 1999 Academic Press

1. INTRODUCTION

Are upswings and downswings in economic activity simply random
deviations around a steady-growth trend, or does the engine of growth
have an inherent cyclic component that contributes to economic fluctua-
tions?
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Resolving this question is important for two reasons. First, if cyclical
movements in output and investment have important endogenous compo-
nents, then the forces that generate them ought to be taken into account
in attempts to design and evaluate stabilization policies. Second, certain
features of cyclical movements of economic activity}such as asymmetric
responses to upswings and downswings and the determinants of cycle
length}can only be explained by a model that endogenizes the determin-
istic part of these cycles and the patterns of economic activity within them.

This paper proposes a model of large and costly technological changes
that endogenously generate deterministic cycles and long run growth. The
level of technology in our model increases in discrete increments, called
innovations, which increase the productivity of capital. To achieve the next
innovation, an economy must accumulate a sufficient amount of resources
diverted from consumption and physical investment.1 When an innovation
occurs, increased returns to capital encourage the economy to devote more
resources to physical investment and thus less to the arrival of the next
innovation. As the marginal product of capital using the existing technol-
ogy declines, the economy again devotes more resources towards the
realization of the next innovation.2 In this way the economy progresses in
cycles of constantly changing consumption and investments of both types,
where the length of these cycles is linked to its long-term growth.

One can think of these innovations as large infrastructural improve-
ments or as ‘‘knowledge’’ generated from costly research. Our emphasis on
the large indivisible nature of investment in infrastructural or research
projects reflects the lumpy nature of the increased productivity attained by
them.3 This lumpiness implies that a costly process must be completed
before the greatest part of a project’s benefits in output can be realized.
The length of that process depends on the intensity of the research or
infrastructural investment.4 Projects that require a large investment of

1 Ž .Fan 1995 has also endogenized the growth rate by explicitly deriving the time between
successive innovations as a solution to an optimal R & D investment problem but fixes
investment and consumption growth at constant rates within each innovation cycle.

2 Most existing growth models with deliberate R & D assume away the trade-off between
capital accumulation and technological progress by considering labor as the only input to the

w Ž . Ž .R & D process e.g., Grossman and Helpman 1991 , Segerstrom 1991 , Aghion and Howitt
Ž . Ž . Ž . Ž . Ž .x1992 , Cheng and Dinopolous 1992a, b , Young 1993 , Parente 1994 , and Fan 1995 .

Ž .Bental and Peled 1996 model the allocation of an accumulable resource between R & D and
production, but separate this decision from the saving decision by households.

3 The input A may be interpreted as a wide variety of factors, public or private. Human
capital, public works, and private structures are among other suggested interpretations of this
input. All are plausible to the extent that they require a prolonged investment process and
have a large impact.

4 Ž . Ž .Fan 1995 and Kleinknecht 1987 among others attempt to document that the rate at
which major technological changes and projects are completed is influenced by the intensity
of investments in such projects.
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resources over endogenously determined periods in order to discretely
increase the productivity of capital can be exemplified in both R & D and
infrastructural contexts. Space research and satellite programs and major
medical research are examples of prolonged and costly R & D whose
benefits come primarily at the conclusion of the project. Infrastructural

Žexamples include the installation of wide systems of communication tele-
. Žgraph, telephone, internet , of transportation shipping canals, interre-

.gional highways, railroads, mass transit , or of electricity transmission that
once complete may increase the productivity of many economic sectors.5

We do not deny the existence of exogenous and random shocks that can
generate fluctuations in economic activity. We offer our model as a
controlled study of the implications of the single assumption that endoge-
nously determined technological improvements come in large discrete
units. From this we hope to distinguish equilibrium implications of our
endogenous deterministic cycles from those that would be predicted by
models of exogenous stochastic technological improvements. We find that
our model is content with the observations of a number of other studies,
observations that might seem puzzling in economies in which all fluctua-
tions are generated by exogenous stochastic shocks.

One puzzle raised by the assumption of exogenous technology shocks
featured in other models lies in the interpretation of output declines as the
result of negative technology shocks. Oil price rises and bad weather may
account for some negative shocks to output, but are the rest of the
observed downward shocks the result of losses in knowledge or technol-
ogy?6 Our model generates output declines even though technology in our
model cannot decline or be made obsolete.

Our model of endogenous cycles also predicts particular co-movements
among investment in major technological developments or in major infras-
tructural projects, on one hand, and investment in physical capital, con-
sumption and output, on the other hand. Specifically, our model predicts
that expansions in research expenditures precede expansions in physical

Ž .capital as observed at the industry level by Lach and Rob 1992 . It
predicts that investment in major technological changes and infrastructural
projects be weakest when output and physical capital growth are strongest.
This also accords with the empirical findings of Hartman and Wheeler
Ž . Ž .1979 and Kleinknecht 1987 in the context of long waves.

Finally, the model predicts sharp increases in output as the economy
exits recessions, but only gradual slips into recessions, in line with evidence

5 Ž . Ž .See a review of theories and some evidence in van Duijn 1983 , Kleinknecht 1987 and
Ž .Greenwood and Yorukoglu 1996 .

6 Ž .See, for example, Summers’s 1986 criticism of real business cycle models for their
assumption of negative technological shocks.
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Ž . Ž .on such asymmetries reported by Emery and Koenig 1992 , Sichel 1993 ,
Ž .and Balke and Wynne 1995 but inconsistent with exogenous stochastic

technology shocks.
Because our social planning solution of the model can be decentralized

as a competitive equilibrium, the demonstrated optimality of the resulting
cyclic allocation stands in contrast to those of earlier models of research-
driven growth, in which externalities or noncompetitive equilibria are
central to the growth process. In particular, ‘‘creative destruction’’ is not a

w Ž .xfeature of the model as in Aghion and Howitt 1992 ; new technological
advances are not assumed to reduce the productivity or profitability of past
advances. Nor is imperfect competition essential for creating incentives for

w Ž .xinvesting in R & D as in Grossman and Helpman 1991 . The model thus
demonstrates that the cyclical nature of growth paths is not necessarily the
result of some inefficient equilibrium. Therefore, while the model’s mecha-

Ž .nism of growth may be called Schumpeterian 1939 in that technological
progress takes place in large discrete steps, intertwining the business cycle
and economic growth, the model is not an exposition or defense of all of
Schumpeter’s many ideas.

What we call development or infrastructure buildup costs bear some
relation to costs of adopting new technologies, which have been recently

Ž .examined in the context of growth and fluctuations by Jovanovic 1996 ,
Ž . Ž .Hornstein and Krusell 1966 , and Greenwood and Yorukoglu 1996 .

These studies take as exogenous the arrival and possibly the size of new
technologies, and examine the cyclic implications for productivity of firm-
specific costs of adoption. We focus instead on the implications for growth
and cycles of costs of developing new technology and infrastructure,
emphasizing the capital theoretic nature of these activities as alternative
forms of investments in enhanced productive capacity.

Our model thereby contributes to the analysis of fluctuations induced by
the cyclical nature of R & D activity, recently studied by Jovanovic and

Ž .Rob 1990 , who examined the choice between innovation and imitative
Ž .refinements, Helpman and Trajtenberg 1994 , who examined the interac-

tion between general and specific purpose technological developments,
Ž .and Bental and Peled 1996 , who examined the cyclic implications of the

complementarily between the size of the capital stock and the intensity of
research activities.

In the next section we introduce the model, and present it as a recursive
planning problem. In Section 3 we study the cyclical behavior of economic
aggregates that characterize the optimal solution to the planning problem.
In Section 4 we demonstrate the magnitude of these cyclical properties
by numerically computing stationary solutions to completely specified
economies. Section 5 highlights the cyclical properties of the planner’s
problem and relates them to some empirical findings. Section 6 shows the
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equivalence of the planner’s solution with the competitive equilibrium
under a particular decentralization of the economy. Section 7 concludes by
listing some historical cases of big infrastructural or research projects that
give some perspective to our theoretical analysis, and summarize our
findings. Existence proofs and computational methods are offered in
Appendix A and Appendix B, respectively.

2. INNOVATIONS-DRIVEN CYCLES

2.1. The En¨ironment

There exists a single infinitely lived representative agent living in contin-
uous time. His preferences are given by the time-discounted utility func-

` yr t w Ž .x Ž .tion H e u C t dt, where C t denotes his consumption at t and r ists0
Ž .a positive constant. The function u ? is twice continuously differentiable,
Ž .increasing, and concave, with u9 C ª ` as C ª 0. We will study in

Ž .particular the constant relative risk aversion function u C s
w Ž .x 1ys Ž . Ž .1r 1 y s C for s ) 0, s / 1, and u C s ln C for s s 1.

Production takes place at a continuum of plants on the unit interval.
Ž .Production at each plant at time t is a function of A t , the technology

Ž .available at t, and K t , the capital available at that plant at t. Note that
Ž .with a unitary measure of plants, K t is the total amount of capital at

Ž .time t. Technology is a nonrival but excludable input, affecting the
output of all plants. The production function takes the Cobb]Douglas,

Ž .a Ž .1ya 7constant returns to scale form, A t K t . Output from production at
Ž .instant t can be used as consumption, C t , investment in new capital,

Ž̇ . Ž .K t , or investment in the development of a new technology, D t . The
initial capital stock per plant is positive and given as K . A constant0
fraction d of the capital stock depreciates at each instant, 0 - d - 1,
implying the following time-t feasibility constraint in output:

a 1ya ˙NA t K t y dNK t s C t q D t q NK t . 2.1Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Technology advances in a series of discrete steps called innovations. The
jth technology available to the economy, A , j s 1, 2, 3, . . . , is as effectivej
in production as g times the previous technology, or

A s g A , g ) 1, j s 1, 2, 3, . . . . 2.2Ž .j jy1

7 The essential features of the production function are that capital and technology are
complements in production and that each has a diminishing marginal product. The Cobb]

Douglas production function with a fixed number of plants is adopted for tractability in
determining a solution.
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Ž .This implies that the jth addition to the level of technology j ) 0 is given
by

a ' A y A s g y 1 A . 2.3Ž . Ž .j j jy1 jy1

The initial level of technology, A s a , is positive and given. Notice that0 0
the jth technology is essentially the sum of the initial technology and the j
existing innovations

j

A s a . 2.4Ž .Ýj i
is0

Technology is advanced through the accumulation of research. Specifically,
when enough research is accumulated under the current technology, the
next technology in line becomes available.

The points in time in which the next technology in line becomes
available are endogenous in that a prespecified amount of cumulative
research is needed to attain the next technology in line, but the time taken
to achieve this accumulation is endogenous. Let t be the first moment inj

Ž .time at which technology A innovation a becomes available, and letj j

T ' t y t be the length of the interval during which technology A isj jq1 j j

Ž .being utilized and technology A is being developed the jth cycle ,jq1
j s 0, 1, 2, . . . . We set t s 0 and A s 1, implying A s g j.0 0 j

The input of D units of goods when technology A is available producesj
Ž . w Ž .xŽ .1yf Ž . Ž .h D s 1r 1 y f DrA units of research for f g 0, 1 . Let D tj j

Ž .denote investment in research input at time t, and let H t denote the
units of research accumulated by time t from the moment at which the
current technology was made available.

Then the accumulation of research is given by

t
H t s h D s ds, t g t , t , j s 0, 1, 2, . . . . 2.5Ž . Ž . Ž ..H j j jq1

sst j

When the economy using the jth technology accumulates HU units of
research, the new innovation a becomes available, increasing the leveljq1
of technology to A . The cumulative research is reset to zero uponjq1
attaining each innovation. Notice that the research effort required to
achieve a technological breakthrough increases at the same rate, g , as the
magnitude of the breakthrough.

2.2. The Planner’s Problem

Let us first examine the social optimum, defined to be the maximum
feasible utility of the representative agent, as a solution of a planner’s
problem. We examine the planner’s problem both for its expositional ease
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and to underscore that the generated cycles are not the result of any
market failure or inappropriately assigned property rights.

Although time is continuous in the model, technological advances take
place in discrete steps. Accordingly, the analysis of the social optimum
involves a combination of discrete and continuous time maximization. The
social planner’s problem involves the choice of time paths for consump-
tion, research effort and capital stocks, as well as the points in time in
which the new technologies become available, given the initial capital
stock K , and the initial technology A :0 0

`
yr tW K , A s max e u C t dt 2.6Ž . Ž . Ž .H0 0

Ž . Ž . Ž . � < 4C ? , D ? , K ? , t js1, 2, . . . ts0j

Ž . Ž .subject to 2.1 , 2.5 and

A t s A , t g t , t , t s 0, j s 0, 1, 2, . . . ,Ž . .j j jq1 0

A s g A , g ) 1, j s 1, 2, . . . ,j jy1 2.7Ž .

H t s HU , j s 0, 1, 2, . . . .Ž .jq1

Ž .K 0 s K ) 0, and A ) 0 are given.0 0
w .Within each technology cycle, t , t , the allocation of resources solvesj jq1

an optimal control problem. The end points of these cycles, when the
required research for the new technology is accomplished, are then chosen
along with the levels of the physical capital stock to solve a discrete
dynamic programming problem. It will be useful to repose the planner’s
problem recursively in terms of these cycles. To this end we index variables

Ž . Ž .by the time within the cycle, so that X t s X t q t for any variablej jy1

Ž . Ž . Ž .X. Accordingly, K t , C t and D t are, respectively, the capital stockj j j
per plant, the consumption and the research effort t units of time into the

ˆ ˆŽ . Ž .jth cycle, and K s K 0 and K s K T are the levels of the capitalj j jq1 j j
stock per plant at the beginning and end of the jth cycle. The ability to

Ž . Ž .augment the capital stock only by accumulation implies K T s K 0 .j j jq1
Ž .Define V T , K , K , A as the maximal within-cycle discounted utility,0 T

given the cycle total length T , beginning and end of cycle capital stocks, K0
and K , respectively, when the available technology is A:T

1ysC tŽ .T yr tw xV T , K , K , A s max e dtH0 T ½ 51 y s� Ž . Ž . Ž . < w x4C t , D t , K t tg 0, T ts0

2.8Ž .
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subject to:

1yaaK̇ t s A K t y dK t y C t y D t , 0 F t F T , 2.9Ž . Ž . Ž . Ž . Ž . Ž .
1yf

t 1 D sŽ .
H t s ds, 0 F t F T , 2.10Ž . Ž .H ž /1 y f Ass0

H T s HU , 2.11Ž . Ž .

K 0 s K , 2.12Ž . Ž .0

K T s K , 2.13Ž . Ž .T

K , K , and T are given.0 T
The original planner’s problem can now be written as

`
yr t j ˆ ˆW K , A s max e V T , K , K , A , 2.14Ž . Ž .Ý0 0 j j jq1 j½ 5`ˆ� 4T K js0j jq1 js0

ˆ ˆwhere T is the length of the jth cycle, and K , K are, respectively, thej j jq1

capital stocks at the beginning and the end of the jth cycle, and where

jy1

t s T , j s 1, 2, 3, . . . , t s 0Ýj m 0
ms0 2.15Ž .

A s A g j, j s 0, 1, 2, . . . ,j 0

K given. Thus, the planner’s problem has a simple recursive structure0
which can be summarized by

W K , A s max V T , K , K , A q eyr T W K , g A , 2.16Ž . Ž . Ž . Ž .� 40 0 0 T 0 T 0
T , KT

Ž . Ž .where V ? is defined in 2.8 .
The Hamiltonian function associated with the within-cycle problem for

Ž .the jth cycle version of 2.8 is

G t , T , C t , D t , K t , H tŽ . Ž . Ž . Ž .j j j j j

yrts e u C tŽ .j

1yaaq m t A K t y dK t y C t y D tŽ . Ž . Ž . Ž . Ž .j1 j j j j j

2.17Ž .

q m t h D tŽ . Ž .j2 j j
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Ž . Ž . Ž . Ž .for which C t and D t are the control variables, K t and H t arej j j j
the state variables. The first order conditions are

­ G
Xyrts e u C t y m t s 0, 2.18Ž . Ž . Ž .j j1­ C tŽ .j

­ G
Xs ym t q m t h D t s 0, 2.19Ž . Ž . Ž . Ž .j1 j2 j j­ D tŽ .j

­ G yaam t s y s ym t 1 y a A K t y d , 2.20Ž . Ž . Ž . Ž . Ž .˙ ½ 5j1 j1 j j­ K tŽ .j

­ G
m t s y s 0. 2.21Ž . Ž .˙ j2 ­ H tŽ .j

Ž . Ž .Conditions 2.18 ] 2.21 are the usual control and costate equations.
Ž .Notice that if K T is itself a choice variable in the jth within-cyclej j

problem, then the associated optimality condition for that variable must be
Ž . Ž .derived from 2.16 , for the ‘‘salvage’’ value W K , g A is the only reasonT

to have positive capital stock at the end of the current cycle. The optimal-
Ž .ity condition associated with an endogenous K T is thenj j

­ W
yr Tjm T s e K T , g A . 2.22Ž .Ž . Ž .j1 j j j­ K

Ž .Likewise, if the cycle length T is to be chosen optimally, then from 2.16j

this variable must satisfy the following condition:8

yr Tj ˙0 s e u C T q m T K TŽ . Ž . Ž .j j j1 j j j
2.23Ž .

yr Tj˙q m T H T y r e W K 0 , g A .Ž .Ž . Ž .j2 j j j jq1 j

2.3. Rescaling

It is convenient at this point to rescale the level of three choice variables
in the jth cycle by the technology in use during that cycle. For any

w xt g 0, T , letj

c t ' C t rA ,Ž . Ž .j j j

d t ' D t rA ,Ž . Ž .j j j 2.24Ž .

k t ' K t rA .Ž . Ž .j j j

8 Ž . Ž . Ž .See Kamien and Schwartz 1981 , p. 147, Eqs. 19 and 28 , in particular.
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Ž .The resource constraint, 2.9 , becomes

1yak̇ t s k t y d k t y c t y d t , 2.25Ž . Ž . Ž . Ž . Ž . Ž .j j j j j

Ž .and the within-cycle value function from 2.8 is redefined as

¨ T , k , k ' V T , K , K , A rA1ys ,Ž . Ž .0 T 0 T

where

k ' K rA ,0 0

k ' K rA.T T

The technology-scaled within-cycle problem is fully described in Appen-
Ž .dix A. The Bellman equation of the planner’s problem, 2.16 , can then be

written as

W K , A s w k s max ¨ T , k , g k q eyr Tg 1ys w k . 2.26Ž . Ž . Ž . Ž . Ž .� 40 0 0 0 T T
T , k1

Of particular interest will be the case of stationary cycles in which all
cycles are of equal length, T s TU all j, and the technology-scaledj

Ž . U Ž . Ž .U U Ž .variables are cycle independent, so that c t s c t , d t s d t , andj j
Ž . U Ž . w U x Žk t s k t for any t g 0, T . In Appendix A we sketch a proof forj

.the existence of such a stationary solution to the planner’s problem.
Along such a solution, the optimal trajectories of these variables are

simply their trajectories along the previous cycle multiplied by the technol-
ogy improvement factor g . In particular,

A K 0Ž .jq1 jq1U Uk T s K T rA s K 0 rA s s g k 0 .Ž . Ž . Ž . Ž .j j jq1 j A Aj jq1

It follows that if the economy starts out with the ‘‘right’’ level of capital
U U Ž .stock, k s k 0 , the recursive representation of the planner’s problem,0

Ž .2.26 , implies

w kU s ¨ TU , kU , g kU q eyr T U

g 1ys w kUŽ . Ž . Ž .0 0 0 0

so that

1ysU UT yrtH e c t r 1 y s dtŽ . Ž .Ž .ts0Uw k s . 2.27UŽ . Ž .0 yrT 1ys1 y e g
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Notice that for the existence and boundedness of the optimal value
function we require

eyr T U

g 1ys - 1. 2.28Ž .

3. CHARACTERISTICS OF ENDOGENOUS CYCLES

Ž .Introducing our assumed functional forms and using 2.18 to eliminate
Ž . Ž .m t from 2.20 , we find, after some rearrangement of terms, a standardj1

Ramsey rule for the growth rate of consumption within a cycle:

c t 1Ž .˙ yas 1 y a k t y d y r . 3.1Ž . Ž . Ž .
c t sŽ .

PROPERTY 1. Consumption is always continuous.

Proof. The continuity of consumption within a cycle is directly implied
Ž .by 3.1 together with the continuity of the capital stock. For continuity of

Ž .consumption across cycles, we use the following argument. From 2.18 for
Ž .t s T and 2.22 we havej

­ W
XK T , g A s u C T . 3.2Ž .Ž . Ž .j j j j j­ K

w Ž . x w Ž . xOn the other hand W K T , g A ' W K 0 , A also measures thej j j jq1 jq1

marginal value of an additional unit of resources per plant at the begin-
ning of the j q 1 cycle. Along the optimal path, this marginal value should
be equally obtained by putting that unit to any of its three possible uses:
consumption, production or research. Consequently, we also have

­ W ­ W
XK T , g A ' K 0 , A s u C 0 3.3Ž . Ž . Ž .Ž .j j j jq1 jq1 jq1­ K ­ K

Ž . Ž .which proves, given strict concavity of u, that C T s C 0 . Q.E.D.j j jq1

A more intuitive explanation for the continuity of consumption along
the optimal path is based on the following ‘‘variational’’ argument. Con-

Ž . Ž .sider a jump discontinuity in consumption at t , such that C T - C 0 .j j j jq1
Ž .Consider a short enough time interval of length D, such that C T y e -j j

Ž X. X Ž . Ž .C e , ;e , e g 0, D . Due to concavity of u ? , discounted utility overjq1
Ž . Ž . Ž .the interval t y D, t q D will increase if we can raise C ? on t y D, tj j j j

Ž . Ž .at the expense of C ? on t , t q D . Such a change is possible byj j
reallocating resources between capital accumulation and consumption on
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Ž .t y D, t , without altering the resources allocated to knowledge accumu-j j
Ž . Ž .lation before and after t . Simply lower K ? on t y D, t , and use thej j j

Ž .resources freed up for consumption. Because D ? has not been changed, t j
will not change either. However, the initial capital stock when A becomesj

available is now lower than it was originally, requiring a reduction in the
Ž .initial level of C 0 . Moreover, the lower capital stock at t implies ajq1 j

higher marginal product of capital with the new technology, and allows for
Ž .a higher than before rate of growth in consumption, according to 3.1 ,

Ž . Ž .without altering D ? . Hence, the consumption path is lower on t , t q Dj j
than it was, but its growth is higher so as to coincide with the original
consumption path at t q D.j

Although consumption is continuous, its growth rate is discontinuous at
Ž .the time of an innovation. From 3.1 we see that the growth rate of

consumption is the difference between the marginal product of capital and
the constants d and r. An innovation discretely shifts up the marginal
product of capital schedule, implying that the growth rate of consumption
immediately after an innovation exceeds the rate immediately before the
innovation.

Ž . Ž . Ž .Using 2.18 to eliminate m t from 2.19 , we findj1

y1rf srfrt rsm t d t s e c t . 3.4Ž . Ž . Ž . Ž .j2

Ž .Noting from 2.21 that m is independent of t , the last equation impliesj2

1rf srfrt rsd t s m e c t 3.5Ž . Ž . Ž . Ž .2

and

ḋ t r s c tŽ . Ž .˙
s q , 3.6Ž .

d t f f c tŽ . Ž .

Ž .or, with 3.1 :

ḋ t 1Ž . yas 1 y a k t y d . 3.7Ž . Ž . Ž .
d t fŽ .

The differences in the within-cycle growth rates of research and con-
Ž .sumption come from two sources: i differences in f and s , the relative

curvatures of the functions representing utility and knowledge production,
Ž .and ii differences in the rate of time discount applied to those two

functions. Notice that if the curvatures are the same for both functions
Ž . Žs s f , research grows faster than consumption over the cycle by the
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.constant rrs because no rate of time discount is applied to knowledge,
in contrast to the time-discounted utility from consumption. This property
will hold in the more general case in which knowledge or infrastructure
accumulation is also subject to discounting, but at a lower rate than utility
from consumption.9

While consumption is everywhere continuous, research effort decreases
discontinuously at the time of an innovation; i.e.,

g D 0 s D 0 - D T , orŽ . Ž . Ž .j jq1 j j
3.8Ž .

g d 0 - d T .Ž . Ž .

These implications constitute Property 2 of the stationary social optimum.

PROPERTY 2. Research effort declined discontinuously at the time of
inno¨ations.

Ž . Ž .Proof. Suppose instead that research effort satisfies g d 0 G d T .
Ž .From 3.5 , then

1rf srf 1rf srfrT rfg m c 0 G m e c T . 3.9Ž . Ž . Ž . Ž . Ž .2 2

Ž . Ž . Ž .Because consumption is continuous, c T s c 0 , implying that 3.9 is
satisfied only if

1 G e rTg syf . 3.10Ž .

Because f - 1,

e rTg syf ) e rTg sy1 3.11Ž .

Ž . rT sy1But recall from 2.28 that e g must be greater than 1 for a solution
Ž .to be a maximum, contradicting 3.10 and proving Property 2 by contra-

diction. Q.E.D.

Given that research effort jumps down at the time of innovations, while
output jumps up and consumption is continuous, it can only be that
investment jumps up at the time of innovations.

PROPERTY 3. In¨estment discontinuously increases at the time of inno¨a-
tions.

9 However, this observation also suggests that a preference specification under which utility
at time t depends on discounted consumption aggregated over time might eliminate this
difference in the growth rates of R & D investment and consumption. Such preferences have
been used to describe services from durable goods. We thank John Heaton for this
observation.
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Proof. Continuity of consumption and capital stock paths, together
Ž . Ž . Ž . Ž . Ž .with 2.24 , imply that c T s g c 0 and k T s g k 0 . From the feasibil-

Ž .ity condition 2.9 in a stationary social optimum for t s 0 we then get

1ya˙g k 0 s g k 0 y gd k 0 y g c 0 y g d 0Ž . Ž . Ž . Ž . Ž .
1ya 3.12Ž .1

) g k T y d k T y c T y d T .Ž . Ž . Ž . Ž .
g

w Ž . Ž . xThe last inequality follows from Property 2 that d 0 - d T rg . More-
over, since gya - 1,

1ya˙ ˙g k 0 ) k T y d k T y c T y d T s k T . 3.13Ž . Ž . Ž . Ž . Ž . Ž . Ž .

Thus, unlike the capital stock and consumption, investment in physical
capital discontinuously jumps up at innovation points in time. Q.E.D.

Finally, in a stationary equilibrium, the condition defining the optimal
Ž .terminal time T , 2.23 , may be written after some algebra as

c T d TŽ . Ž . s1ys˙q q k T s rg w k 0 c T . 3.14Ž . Ž . Ž . Ž .
1 y s 1 y f

At this point we can summarize a stationary social optimum as a cycle
w Ž . Ž . Ž .x w xlength T and a triple c t , d t , k t defined over the interval 0, T ,

Ž . Ž . Ž . Ž .satisfying the endpoint conditions c T s g c 0 , k T s g k 0 ,
T w Ž .x Ž .1yf U Ž . Ž . Ž .H 1r 1 y f d t dt s H , the laws of motion 3.1 , 3.7 , and 2.25 ,0

Ž . Ž .and where the terminal time T satisfies 3.14 and 2.27 .

4. COMPUTING STATIONARY CYCLES

In order to demonstrate how the cyclical features of the solution depend
on the value of environmental parameters, we proceed by computing
numerical solutions of stationary optimal paths. Based on these solutions
we can obtain illustrations of the magnitude and nature of the cyclical
fluctuations along the optimal growth paths, as a function of key parame-
ters of the economy.

We utilize the recursive technology-scaled version of the planner’s
Ž .problem, 2.26 , rewritten as

w k s max ¨ T , k , g kX q eyr Tg 1ys w kX , 4.1� 4Ž . Ž . Ž . Ž .
XT , k
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Ž .where k is the technology scaled stock of physical capital at the begin-
ning of the cycle, and the only choice variables for the current cycle are T ,
the endogenous length of the cycle, and g kX, the endogenous end-of-cycle

Ž .stock of capital in terms of the current cycle technology-scaled capital .
It can be shown that under some mild restrictions on parameter values

there exists a unique solution to this functional equation which attains the
Žsupremum function of the representative agent’s problem see Appendix

. Ž . XA . Let the optimal policies attaining that solution be T s c k , k s1
Ž .c k . Further, there exists a stationary solution in terms of technology-2

U U U Ž U .scaled capital stock, k , and cycle length, T , such that k s c k and2
U Ž U .T s c k .1
In terms of the original ‘‘unscaled’’ variables, this stationary optimal

path has the following structure, provided K s kU. Cycle lengths are all0
equal to TU , so that t s j ? TU , j s 0, 1, 2, . . . . The capital stock at thej
beginning of each cycle is g times larger than it was at the beginning of

Ž . Ž . j Uthe previous cycle, K t s g K t s g k , j s 1, 2, 3, . . . . The optimalj jy1
Ž . Ž .consumption path is continuous across cycles, so that C t s g C t .j jy1

Ž . Ž .Finally, the growth rate of output, given that Y t q t s g Y t q t forj jq1
any j and 0 F t F TU , is

ln g
g s . 4.2Ž .UT

Using these properties, we can solve for the stationary optimal path
Ž .numerically, for a broad range of parameters see Appendix B for details

.on the computation method .
The parameters used for the illustrative solution are: a s 0.7, s s 0.8,

f s 0.56, r s 0.05, g s 1.3, d s 0.10, and HU s 10. The resulting values
for endogenous variables in a stationary optimum for these parameters

U U Ž . Ž . Ž . 10are: T s 9.0, k s k 0 s 1.687, c 0 s 0.669, and d 0 s 0.102. Fig-
ure 1 shows the time paths of endogenous variables over the first three
consecutive stationary cycles along a stationary solution, while Fig. 2 shows
the within-cycle growth rates of these variables and the share of gross
investment out of total output.

Figures 1 and 2 depict the movements within a stationary cycle in which
capital declines near the end of a cycle. Notice that the growth rates of
research and consumption begin to rise as capital starts to decline near the

w Ž . Ž .xend of a cycle see Eqs. 3.1 and 3.7 . Essentially the maintenance of the
capital stock is neglected while resources are instead devoted to complet-

10 w Ž .x Ž .The resulting value for the technology-scaled value function w k 0 in 3.27 is 105.08,
Ž . Ž .while the end of cycle values of the endogenous variables are c T s 0.87, d T s 0.33, and

Ž . Ž .k T s 2.19. These values satisfy 4.14 , the condition for the optimal terminal time.
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Ž .FIG. 1. Three consecutive cycles levels .

FIGURE 2
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Žing the upcoming innovation and to raising consumption toward the level
.that will be chosen upon the arrival of the new innovation .

While reductions of output and capital are not features of the optimal
planning problem for all parameter values, the potential for output de-
clines as a part of a socially optimal cycle is worth some attention. It
demonstrates that neither negative technology shocks nor creative destruc-
tion are necessary to explain output declines.

To evaluate the impact of parameter values on the optimal length of the
cycle and capital accumulation patterns, we compute the stationary solu-
tions for alternative sets of parameters, presented in Table I. Each entry in
the table gives the elasticity of the endogenous variable with respect to
changes in the row parameter. The variable k rk U represents the ratiomax T
the highest capital stock within the cycle to the stock at the end of the

Ž .cycle, while g, the growth rate, is given by 4.2 .
For all parameters except g , the elasticity of the length of a cycle, TU , is

w Ž .xof equal size but opposite sign of that of the growth rate, g see 4.2 .
Ž .Changes in g have a compound effect: growth increases directly as ln g

increases, but in addition TU declines, thus further enhancing the growth
Ž .rate. Parameters capturing the technological improvement g , the produc-

Ž .tivity of knowledge accumulation f , or the required cumulative R & D
Ž U .for the new technology H , have the expected impact on the growth

rate. A higher discount factor prolongs the optimal time over which the
required knowledge for the next technology is accumulated, thus reducing
the growth. A higher value for s represents a lower marginal utility from
high levels of consumption, which reduces the desire for growth.

The impact of parameter changes on the pattern of capital accumulation
is less obvious. First, note that for the base case reported in the table, any
parameter change has opposite sign effects on the growth rate, and the

Ž .Umeasure of capital’s end-of-cycle decline as captured by k rk . How-max T
ever, these are not robust conclusions, as we have computed examples

TABLE I
Elasticities of Endogenous Variables

UParameter g k rkmax T

s y0.40 0.07
f 2.52 y0.50
r y0.73 0.11

UH y1.62 0.18
g 6.09 y0.36

Note. Base parameters: a s 0.7, s s
0.8, f s 0.56, r s 0.05, HU s 10, g s
1.3, d s 0.1; endogenous variables: TU s
9.00, g s 0.029, k rk U s 1.088.max T



FREEMAN, HONG, AND PELED420

where the effect of g on capital’s decline, for instance, depends on the
magnitude of HU : it increases the amount of capital’s end-of-cycle decline
for high values of HU , and reduces it for low values of HU. Higher
discount rates increase the amount of capital’s decline within the cycle,
since the alternative of financing research effort by foregone consumption
becomes less attractive.

The reported elasticities are not necessarily representative of what
occurs at different parametric configurations. Yet, they illustrate the
simplest form of trade-off between consumption, capital accumulation and
investment in technology enhancement that have been ignored by and
large in the growth literature. Adding any form of adoption or implemen-
tation costs associated with new technologies can considerably complicate
these relationships, but is unlikely to wash them away.

5. CYCLICAL IMPLICATIONS

Properties 1]3, and their graphic illustrations in Figs. 1 and 2, allow us
to characterize some features of the socially optimal stationary business
cycle. Despite the discontinuous technological advances, consumption is
continuous within and between cycles. An innovation causes an output
increase and an upward shift in the marginal product of capital. The
increased marginal product of capital causes investment to jump up. At the
same time, research effort discontinuously declines because the marginal
product of another innovation is low. As time passes within the cycle, the
increased investment in physical capital lowers the marginal product of
capital and thus investment in capital, leaving more resources for con-
sumption and research effort. Notice that the local peak level of research

Ž .effort just before the innovation immediately precedes the local peak of
Ž .physical capital investment just after the innovation , consistent with the

Ž .finding of Lach and Rob 1992 , who report that expansions in research
expenditures precede expansions in physical capital at the industry level,

Ž .business cycles frequencies. Hartman and Wheeler 1979 also report
evidence indicating that infrastructural investment seems to peak at the
trough of output cycles.11 Similarly, the highest output growth rates occur
just after the lowest, consistent with the finding of Balke and Wynne
Ž .1995 .

The model’s implication of the asymmetry of growth and related vari-
ables within the business cycle has been noted in a variety of empirical

Ž . Ž .studies. Emery and Koenig 1992 , Sichel 1993 , and Balke and Wynne
Ž .1995 find that the economy bursts out of recessions into expansions but

11 Ž .Lach and Rob 1992 report that expansions in research expenditures preceed expan-
sions in physical capital at the industry level, business cycles frequencies.
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only gradually slips back into recession.12 They find that growth rates at
the beginning of expansions exceed those at the end of expansions but that
growth rates within recessions exhibit no significant changes. This asymme-
try cannot be examined by the common approach of comparing the second
moments of artificially generated data from calibrated business cycle

13 Ž .models to those of real world data. Balke and Wynne 1995 therefore go
on to show that the artificially generated data from a calibrated business
cycle model differs significantly from the asymmetric pattern they observe
in the actual data. Our model of innovations, in contrast, generates a
stylized form of the pattern found in the actual data: sharp expansions in

Ž .output at the time of the innovation with subsequent gradual declines in
output growth.

Ž .Recent research into the existence of long waves 45]60 years in length ,
suggests that at least for the last 100 years there have been statistically
significant differences in the growth rates of various measures of economic
activity over time that fit the time framework of Kondratieff long waves
Ž .Kleinknecht, 1987 . Kleinknecht also compared lists of ‘‘major’’ or ‘‘radi-
cal’’ industrial innovations against lists of broader inventive activities of an
incremental nature, made during the 19th and 20th centuries. These lists
were compiled by various authors for the U.S. and U.K., using different
Ž .subjective criteria. He concludes that: ‘‘all samples show clear evidence
of a slowdown of radical innovations in the course of the long wave

Ž .upswing’’ p. 117 . At the same time, broader measures of inventive activity
such as general U.S. patenting, as well as general investment in capital,
tend to move in tandem with output growth.

This model may also display absolute declines in output resulting from
decreases in the capital stock. If they occur, such output declines will be
observed at the end of a cycle, just before the next innovation, when
research effort is at its highest. Essentially, the research push just before
the innovation is financed in part from resources that would otherwise be
devoted to replacing depreciated capital. It is important to recall that the
model does not adopt Schumpeter’s assumption of creative destruction;
the innovation does not make any part of the capital stock obsolete. The
output declines that we may nevertheless observe as implications of the

12 Ž .Asymmetries in unemployment rates over the cycle have also been noted. Neftci 1984
suggested that unemployment rates are asymmetric in the sense that consecutive increases in

Ž .that rate are more likely than consecutive declines. Sichel 1989 corrected a mistake that
Ž .reversed Neftci’s results, although his own subsequent work, Sichel 1993 , as well as others’,

Ž .like Rothman 1991 , use different methods that uncover similar asymmetries to those found
by Neftci.

13 Ž .This approach originated with Kydland and Prescott 1982 . An extensive and useful
Ž .recent survey may be found in Cooley 1995 .
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model stem instead from the model’s central feature that physical capital
and research effort must compete for limited resources.

6. DECENTRALIZATION OF THE SOCIAL OPTIMUM

The social planner problem was solved for its relative tractability. We
show here that its solution is equivalent to the allocation that emerges
from a competitive equilibrium. A secondary purpose of this section is to
demonstrate that, unlike many earlier models of growth through research
and development, the equilibrium implications of our model do not de-
pend on any special assumptions of externalities or imperfect competition.

Let us define a competitive equilibrium with reference to three distinct
groups of optimizing, price-taking agents: households, manufacturing
plants, and research firms, each of measure 1.

Households create capital and knowledge. Knowledge is accumulated by
households until converted into an innovation of a s A y A units ofj j jy1
technology by a research firm. In return for accumulated knowledge, a
research firm gives each household a share in the ownership of the next
innovation proportional to that household’s contribution of knowledge. At
the time of one innovation, research firms compete by announcing the
date of the next innovation and the units of knowledge a household must
contribute at that time. Households choose the research firm offering the
date of the breakthrough that they prefer and the pace of their accumula-
tion of knowledge. Households rent existing technological innovations and
capital to manufacturing firms. Innovations generate positive rents be-

Ž .cause they can be withheld from any plant are ‘‘excludable’’ . All firms
maximize profits. Free entry ensures zero profits in equilibrium.

6.1. Manufacturing Plants

The competitive manufacturing plants rent capital and technology taking
as given the respective rental rates p and u . It follows that the demandt t
of a representative manufacturing plant for these inputs will equate the
marginal product of each input to its rental rate:

p s 1 y a AaKya , 6.1Ž . Ž .t t t

u s a Aay1K 1ya . 6.2Ž .t t t

As usual for a constant returns-to-scale production function, there are
zero profits when inputs are paid their marginal product. Notice that by
assumption no innovation is essential for production. In particular, a
technology unit associated with the jth innovation is as good as a technol-
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Žogy unit associated with the mth innovation although these innovations
.differ in the number of such technology units that they contain . Conse-

quently, competition in the market for technology will emerge when there
exist many innovations, and will drive the technology rental rate per unit to
its marginal product.14

6.2. Research Firms

Competition among potential research firms will force the research
firms to offer shares in the ownership of the next innovation equal to the

Ž U .fraction of the required knowledge H supplied by households.
The research firm will also announce a date T at which the innovationj

Žwill be accomplished. Because the research firm earns zero profits at any
such date, it will choose the date that maximizes household utility, effec-

.tively making the choice of this date part of the household decisions.

6.3. Households

Again it will be helpful to divide time into cycles. The representative
Ž . Ž .household chooses consumption C t , research effort D t , capital perj j

Ž .plant K t , and the time of the next innovation t taking as given thej j
Ž . Ž .capital rental rate p t and the innovation rental rate u t paid by eachj j

plant so as to maximize its lifetime utility. The household’s budget con-
straint at moment t of the jth cycle may then be written as

K̇ t s p t K t y dK t q u t A y C t y D t . 6.3Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .j j j j j j j j

The budget constraint takes into account that all existing innovations that
make up the current technology A are owned and rented out by thej
household. The stock of research is given as before by

t

H t s h D s ds. 6.4Ž . Ž . Ž .Hj j j
ss0

14 The indivisible nature of innovations might be seen to imply that the pricing of
innovations at their marginal product is an approximation to the competitive equilibrium in
which new technologies are rented in a spot market. The most recent innovation is a

Ž .more-than-infinitesimal 1 y 1rg fraction of the total technology. While the rates of arrival
of innovations may be increased if recent technology is overpriced in a less than fully
competitive equilibrium relative to the social planner solution, this will not alter the cyclic
implications of the model. Moreover, oligopoly profits are likely to induce other forms of
markets such as research firms contracting in advance with the firms who will rent the new
technology. While such questions of industrial organization are interesting in their own right,
we wish to keep the focus of this paper on the cyclic and growth properties of the model.
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ŽA representative household when the number of households is normalized
.to 1 owns A units of technology in the jth cycle, and is subject to thej

cycle’s endpoint conditions:

H T s HU , 6.5Ž .Ž .j j

K T s K 0 . 6.6Ž . Ž .Ž .j j jq1

The Hamiltonian function associated with this maximization problem
may be written as

G t , T , C t , D t , K t , H tŽ . Ž . Ž . Ž .j j j j j

yrts e u C tŽ .j

q m t K t p t y d y C t y D tŽ . Ž . Ž . Ž . Ž .� 4j1 j j j j

6.7Ž .

q m t h D t ,Ž . Ž .j2 j j

Ž . Ž . Ž . Ž .for which C t and D t are the control variables, K t and H t arej j j j

the state variables and T is the optimally chosen terminal time. The firstj
order conditions are

­ G
Xyrts e u C t y m t s 0, 6.8Ž . Ž . Ž .j 1 j­ C tŽ .j

­ G
Xs ym t q m t h D t s 0, 6.9Ž . Ž . Ž . Ž .1 j 2 j j j­ D tŽ .j

­ G
m t s y s ym t p t y d , 6.10Ž . Ž . Ž . Ž .˙1 j 1 j j­ K tŽ .j

­ G
m t s y s 0, 6.11Ž . Ž .˙2 j ­ H tŽ .j

XyrTjm T s e W K T , 6.12Ž .Ž . Ž .1 j j jq1 j j

yr Tj ˙0 s e u C T q m T K TŽ . Ž . Ž .j j j1 j j j

yr Tjq m T h D T y r e W K T . 6.13Ž .Ž . Ž . Ž .j2 j j j j jq1 j j
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6.4. Equï alence

Ž . Ž . Ž . a yaUsing 6.1 and 6.2 to substitute the marginal products 1 y a A Kt t
ay1 1ya Ž . Ž .and a A K for the input prices p and u in 6.3 and 6.10t t t t

Ž . Ž .demonstrates that the equilibrium conditions 6.1 ] 6.13 satisfy the condi-
Ž . Ž .tions 2.18 ] 2.23 defining the solution to the planner’s problem.

7. CONCLUDING REMARKS

7.1. Infrastructural Examples

There are numerous examples of big research or infrastructural projects
that are characterized by huge investments and relatively long develop-
ment periods, where most of the benefits occur only after the project is
complete. In some cases, an extended development or construction period
is imposed by technological limitations. Yet, in most of them, this period is
endogenous in the sense that higher investment can make it considerably
shorter. The actual development period of big projects varies depending on
their nature. Still, the underlying trade-off between faster development of
these projects and higher investment in existing technologies remains an
important feature that has been left out of most models of endogenous
technological development. We briefly offer in this section just a few
motivating examples of such innovations in the economic sectors of trans-
portation, communication, medical science and energy.

Work on the first line of 3.75 miles of the Metropolitan Railway,
London’s original underground subway company, began in 1860, using

Ž‘‘cut-and-cover’’ methods, and the line began operating in 1863. The Paris
.Metro’s first line of 6.25 miles also took 3 years to become operational.

The line was an immediate success, carrying 9.5 million passengers in its
first year of operation and had more than a local economic effect. The
availability of this form of mass transit system enabled London to cope
effectively with its inherited urban structure which was otherwise unsuited
for becoming a world center for commerce and industry.

The railroads system in the U.S. developed over time at a rate that
reflected both its cost and perceived benefits. Actual construction of the
rail network in the U.S. began in 1828. The first line became operational in
1830, and at the end of that year the country had a total of 23 miles of

Žrailroads in operation. Five years later the system had 1100 miles average
. Žannual rate of 220 miles , and by 1848, the system had 6000 miles average

.annual rate 330 miles , with virtually all of it in states along the Atlantic
seaboard. With general prosperity and the news of the California gold
strike, railroad construction rose to the average rate of 3220 miles per year
through the 1850’s. In the 1880’s construction boomed to at an average of
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more than 11,260 miles per year. Expansion at a lower rate continued until
1910. It is difficult to quantitatively evaluate the impact of the railroad
network on economic development in the U.S., although its enormous

Ž .effect can hardly be doubted. Braudel 1992 compared the volume of
goods carried inland in Germany in the late 18th century and in 1913, and
comes up with a factor of 130, which he views as evidence of the way

Ž . Žrailways opened up the country p. 350 . Of course, many additional
.factors surely contributed to that growth.

Telegraph systems using wires proliferated in Europe and the United
States in the 1840’s. Subsequently extending that service overseas required
additional investments and improvements. It took some 20 years from the
first successful laying of a submarine cable between Dover and Calais in
1851 for most of the major cities of the world to be connected by
telegraph.

The Genome project of sequencing and mapping the 3 billions base-pair
human genome is an example of a huge research project conducted by an
international consortium, involving billions of dollars and thousand of
scientists. The rate at which this project proceeds is almost proportional to
the amounts invested in it, since the sequencing requires tedious work and
expensive equipment, but involves almost nothing except data generation.
The immediate benefits from that project include the ability to cope with
major diseases such as tuberculosis, meningitis, and cholera, and the
development of new drugs, particularly against antibiotic-resistant strains.

The construction of the Aswan High Dam on the Nile river extended
over the period 1960]1971, and its cost was about $1 billion, a whopping

Ž4% of the Egyptian annual GDP at the time. A third of the cost was
.borne by the Soviet Union. When completed, the hydroelectric capacity of

Ž .the dam 2100 megawatts was capable of supplying 60% of the Egyptian
annual electricity consumption, prevented for the first time in history the
annual floods of the Nile, and enabled irrigation of hundreds of thousands

Žof new acres. Dams of similar magnitudes elsewhere e.g., Hoover on the
.Colorado river, Grand Coulee Dam on the Columbia river were typically

constructed over 5]10 years.
The search for alternative sources of energy, although active for decades,

received a big push in the 1970’s following the 1973 oil crisis. The
plummeting of oil prices has subsequently reduced the resources allocated
to that research program, but the rate at which oil reserves are depleted all
over the world makes renewed big future investments in that research a
certainty.

These examples share several features. First, they involve big benefits
that cannot be exploited before most of the project is complete. In some
cases, such as Alaska’s Pipeline or the Aswan High Dam, there are no
gains whatsoever before the full completion of the project. In other cases,
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such as the railroad network, some benefits can occur gradually with the
scope of the project, but most of the external and indirect benefits require
its completion. Second, the examples involve a relatively long development
period of several years. Third, the precise length of the development
period is directly affected by the amounts invested in the project and in its
associated refinements, long after most of the scientific and technological
uncertainties have been resolved.

It is often difficult to draw the line between what we would call
implementation costs of a project, and what other authors call adoption

w Ž . Ž .xcosts see Jovanovic 1996 , Greenwood and Yorukoglu 1996 . What we
emphasize in this paper are the cyclical and growth implications of the
optimal funding of big and indivisible projects whose largest payoff is at
the completion of the project.

7.2. A Summary

Ž .Our model is based on two basic assumptions: i that a significant
fraction of advances in productivity do not fall from the sky but result from
expensive and cumulative efforts undertaken in the expectation of future

Ž .returns; and ii that some of these advances discretely increase the
productivity of a substantial fraction of the capital stock. These innova-
tions to the production process may take the form of new knowledge or
improvements in an economy’s physical infrastructure. The goal of this
paper is to work out the equilibrium implications of these assumptions for
the composition, shape, and duration of economic fluctuations in an
endogenously growing economy.

Despite our citation of certain business cycle facts consistent with our
model, we wish to be agnostic about the frequency at which an inno-
vation-driven cyclical pattern of growth might show itself. It may be, for
example, that large economy-wide innovations in knowledge or infrastruc-
ture affect economic performance at a longer frequency than those studied
by real business cycle models using data detrended by a Hodrick]Prescott
filter.

To focus on the implications that result from our ‘‘Schumpeterian’’
assumption of large technological advances, we have set aside many other
plausible sources of economic fluctuations. Introducing shocks to govern-
ment expenditures, oil prices, or the size of technological improvements
will generate richer patterns of economic fluctuations but would cloud the
role of endogenous discrete technological improvements. Costs or delays
in adopting innovations or obsolescence of vintage technologies will like-
wise influence the pattern of the cycle. Sorting out the relative importance
of alternative sources and channels of fluctuations at a variety of frequen-
cies will require empirical methods beyond the scope of this stylized
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version of our model. What our model illustrates is the potential of
inherently cyclical economic activity over time, stemming solely from
changes in the relative profitability of alternative forms of investment,
even absent other sources of fluctuations.

APPENDIX A: EXISTENCE OF STATIONARY SOLUTIONS

The Bellman equation associated with the social planner problem in
Ž .3.26 is

w k s max ¨ T , k , g kX q eyr Tg 1ys w kX , A.1� 4Ž . Ž . Ž . Ž .
XT , k

where the cycle-specific discounted utility is defined by

1ysc tŽ .T yr t¨ T , k , k s max e dt A.2Ž . Ž .H0 T ½ 51 y sŽ . Ž . Ž .c ? , d ? , k ? ts0

subject to
1yak̇ t s k t y d k t y c t y d t ,Ž . Ž . Ž . Ž . Ž .
1yfḢ t s d t r 1 y f ,Ž . Ž . Ž .

k 0 s k ,Ž . 0 A.3Ž .
k T s k ,Ž . T

H 0 s 0,Ž .

H T s HU ,Ž .

where the initial technology A normalized to 1, and t s 0.0 0
Ž .We show that under certain mild conditions, the right-hand side of A.1

is a contraction mapping in the space of relevant bounded functions so
Ž .that it has a fixed point w ? .

w x Ž . Ž .Let KK ' k , k and let f ? and g ? be any two continuous func-min max
15 Ž .tion from KK to KK. Let ¨ T , k , k be a given continuous function for0 T

T ) 0, k , k g KK, strictly increasing and concave in T and k , and strictly0 T 0
Ž . Ždecreasing in k , with ¨ 0, k , k s 0 for any k , k . Utility over a cycleT 0 T 0 T

increases at a decreasing rate the longer is the interval over which HU

needs to be accumulated and the larger is the initial capital stock, while it
.decreases with the required end-of-cycle capital stock.

15 Ž . Ž .Note that in the ‘‘technology scaled’’ version of the problem, A.1 ] A.3 , the existence
of a maximal sustainable capital stock can be established in the standard manner.
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Define the operator w on such functions by

w ( f k s max ¨ T , k , g kX q eyr Tg 1ys f kX A.4� 4Ž . Ž . Ž . Ž .
XT , k

subject to

kX g KK,
A.5Ž .T G 0.

We show that w is a contraction mapping by showing that it satisfies two
Ž .sufficient conditions Blackwell’s Conditions :

Ž .a Monotonicity
w Ž . Ž . x Ž . Ž .Suppose f G g i.e., f k G g k , ;k g KK . Let T , k and T , k attainf f g g

w ( f and w ( g, respectively, for some arbitrary given k g KK. Then,

w ( g k s ¨ T , k , g k q eyr Tgg 1ys g kŽ . Ž . Ž .g g g

F ¨ T , k , g k q eyr Tgg 1ys f k since g F fŽ .Ž . Ž .g g g
A.6Ž .

F ¨ T , k , g k q eyr Tfg 1ys f k by definitionŽ .Ž . Ž .f f f

s w ( f k .Ž .

Ž .b Discounting
Ž .Here we have to show that there exists b g 0, 1 such that for any

constant x G 0,

X XyrT 1ys
Xmax ¨ T , k , g k q e g f k q xŽ . Ž .� 4T , k

A.7Ž .
F max X ¨ T , k , g kX q eyr Tg 1ys f kX q b x .� 4Ž . Ž .T , k

Let T be the time it takes to accumulate HU from k s k , devotingmin 0 max
˙all resources to that purpose, so that c and k are both zero. Clearly, any

optimally chosen T will exceed T . Therefore, setting b s eyr Tming 1ys
min

will satisfy this condition for any x G 0. However, we also require that
Ž . yr Tmin 1ys UT ) 1 y s rr ln g so that e g - 1. This, in turn, restricts Hmin

from below, given k , s , g , and r.0
Ž .This proves the existence of a function w : KK ª KK which satisfies A.1 .

X Ž . Ž .Let k s c k and T s c k be the optimal policy attaining w. Since1 2
Ž . Uc ? : KK ª KK, and is continuous, it has a fixed point k in KK, so that1

U Ž U . U Ž U .k s c k , T s c k , and1 2

w kU s ¨ TU , kU , g kU q eyr T U

g 1ys w kU . A.8Ž . Ž . Ž . Ž .
Q.E.D.
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APPENDIX B: NUMERICAL SOLUTION TO THE
‘‘WITHIN CYCLE’’ PROBLEM

The first order necessary and sufficient conditions for solving the
Ž . Ž .‘‘within-cycle’’ problem, A.2 , together with the resource constraint, 3.9 ,

Ž .and the definition of knowledge accumulation, 3.10 , imply the following
Ž .system of differential equations in c, d, k, H as functions of elapsed time

w xduring the cycle, t g 0, T :

ċ
yas 1 y a k y d y r rs , B.1Ž . Ž .Ž .

c

ḋ s c r˙
s y , B.2Ž .

d f c f

˙ 1yfH s d r 1 y f , B.3Ž . Ž .
˙ 1yak s k y d k y c y d, B.4Ž .

together with the given endpoint values:

H 0 s 0, B.5Ž . Ž .
H T s HU , B.6Ž . Ž .

k 0 s k , B.7Ž . Ž .0

k T s k , B.8Ž . Ž .T

T given. B.9Ž .
This is a ‘‘two point boundary problem,’’ where some of the initial values
are missing, and are replaced by given end point values. We use a standard

w Ž .xroutine a modified version of the code provided in Press et al. 1992 to
solve this problem numerically. The solution includes the optimal con-

Ž .sumption path, c t , 0 F t F T , the end values of which to be denoted by
Ž . Ž . Ž .c 0; k , k , T , and c T ; k , k , T , and the indirect utility ¨ T , k , k s0 T 0 T 0 T
T yrt Ž Ž .1ys . Ž . 16H e c t r 1 y s dt .ts0
The solution to the social planner problem requires us also to solve for

the optimal cycle length. In addition, on a stationary solution, the capital
stock and consumption grow by the factor g across consecutive cycles. We
therefore proceed as follows to solve for the stationary optimal solution.
For a given k we set k s g k , and then solve the problem over a fine0 T 0

Ž .grid for T , the cycle length. With the values of ¨ T , k , g k computed0 0

16 The ‘‘shooting’’ method for solving a ‘‘two point boundary problem’’ is extremely
sensitive to initial conditions and parameter values. Consequently, the process is rather
tedious and can be only partially automated.
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over this grid, we use the first order condition for optimally choosing T in
Ž .A.1 to select the ‘‘optimal’’ cycle length for these end values of the
capital stock. This condition is

­ ¨
yr T 1ys0 s T , k , k y r e g w k . B.10Ž . Ž . Ž .0 T T­ T

Ž . Ž .Instead of the unknown function w ? we use 3.27 , assuming that we are
Ž .on the optimal path. The partial derivative in B.10 is evaluated numeri-

cally, and we denote the value of the ‘‘optimal’’ T which satisfies this
Ž .equation by T k . We now let k vary over a fine grid, and look for a0 0

value kU at which the optimal consumption path satisfies

U U U U U U Uc T k ; k , g k , T k s g ? c 0; k , g k , T k . B.11Ž . Ž . Ž . Ž .

This procedure gives us the stationary values k s kU , k U s g kU , and TU
0 T

Ž .for the cycle-free version of the social planner problem. Using 3.24 we
can then compute the paths of endogenous variables for all cycles.

As a check on the correctness of this procedure for identifying the
stationary solution for the cycle-free problem, we ran the ‘‘two point
boundary problem’’ solver routine on a problem with the end of cycle
values as initial conditions. Getting the same cycle length, together with
end of cycle values for k and c which were g times larger than the
beginning of the cycle, verified our procedure.
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