
Optimal rewards in contests

Chen Cohen∗

Todd R. Kaplan∗∗

and

Aner Sela∗∗∗

We study all-pay contests with effort-dependent rewards under incomplete information. The value
to winning the contest for each contestant depends not only on his type but also on the effort-
dependent reward chosen by the designer. We analyze which reward is optimal for the designer
when his objective is either total effort or highest effort and when the value to a contestant for
winning the contest is either multiplicatively separable or additively separable in reward and type.
We find that when the value is multiplicatively separable, the optimal reward is always positive,
while when the value is additively separable, it may also be negative. We also find that when the
designer maximizes total effort and there is a sufficiently large number of contestants, the optimal
reward decreases in the contestants’ effort; however, when the designer maximizes the highest effort,
the optimal reward may increase in the contestants’ effort for any number of contestants. Finally,
when we allow for the possibility of multiple rewards, we find that the designer’s payoff depends
only upon the expected value of the effort-dependent rewards and not on the number of rewards.

∗ Ben-Gurion University; chencohe@bgu.ac.il

∗∗ University of Exeter and University of Haifa; Dr@ToddKaplan.com..

∗∗∗Ben-Gurion University; anersela@bgu.ac.il.

Acknowledgments: We wish to thank seminar participants at Universities of Bonn, Exeter, Haifa, and
conference participants at Advances in the Theory of Contests and Tournaments at WZB, Berlin in
2005. We also acknowledge Benny Moldovanu, Bradley Ruffle, Estelle Schulgasser, Roland Strausz,
two anonymous referees, and Editor Jennifer Reinganum for helpful comments. Todd Kaplan wishes
to thank the Leverhulme Foundation (Grant RF/7/2006/0325) for financial support.



1. Introduction

¥ The Ansari X-prize was a ten-million-dollar competition created to jumpstart the space tourism

industry by attracting the attention of the most talented entrepreneurs and rocket experts in the

world.1 This R&D contest is an example of a competition in which all contestants, including those

that do not win any reward (prize), incur costs as a result of their efforts but only the winner gets

the reward. Such winner-take-all contests take many other forms: only the first firm to invent gets

a patent, the hedge fund that finds the arbitrage opportunity the quickest gets the profits, the first

runner to cross the finish line wins a marathon, and only the best worker gets the promotion.

In many situations, there is a relationship between the efforts made in the contest and the size

of the reward collected by the winning contestant. In the X-prize as with patent races, the winning

firm choosing a larger effort leads to an earlier innovation time. This in present value terms leads to

a larger reward. A hedge fund not only faces competition from other hedge funds, but from market

forces eliminating opportunities. Earlier detection can lead to larger profits. In the marathon,

harder training can lead to a quicker winning time. This can result in a larger reward (such as if a

course or world record is broken). In work promotions, greater effort can result in a larger raise to

the winner.

Also in many cases, the sponsor has at least a limited control over the design used: the govern-

ment can determine scope and length of patents, the SEC can regulate hedge funds, the organizers

of the marathon can set the size of the prize, and the company can set rules with a promotion

contest.
1The cash prize was awarded to the team headed by Burt Rutan and Paul Allen who were the first to privately

finance, build and launch a spaceship able to (a) carry three people to 100 kilometers (62.5 miles), (b) return safely
to earth, (c) repeat the launch with the same ship within two weeks. The X-prize was inspired by the early aviation
prizes of the 20th century, primarily the spectacular trans-Atlantic flight of Charles Lindbergh in the Spirit of St. Louis
which captured the $25,000 Orteig prize in 1927. See www.xprizefoundation.com for a description of the contest,
winners, and inspiration from the Orteig prize.
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There has been initial research in contests with the aforementioned effort–dependent rewards.

Kaplan et al. (2002, 2003) show that in contests under incomplete and complete information, for

particular effort-dependent rewards there are substantial qualitative changes to the behavior of the

contestants compared with constant reward contests. In addition, there is a growing literature of

contest design. Baye et al. (1993), Taylor (1995), Fullerton and McAfee (1999) found advantages

to limiting the number of contestants. Che and Gale (1998), Gavious et al. (2003) and Kaplan

and Wettstein (2006) all analyze the profitability of bid caps. Barut and Kovenock (1998) and

Moldovanu and Sela (2001) study fixed-reward contests, where the designer can determine the

number of prizes having positive value and the distribution of the fixed total reward among the

different prizes.

The contribution of this paper is that we combine contest design with effort-dependent rewards,

that is, we allow the designer of the contest to choose how the rewards depend upon efforts. We

study this design problem under incomplete information about the contestants’ types. We also use

a two-by-two framework: there are two possible objectives for designer, maximize either the total

expected effort or the expected highest effort of the contestants (minus reward paid), and there

are two possible preferences of the contestants, the value to winning is multiplicatively separable

in reward and type and the value to winning is additively separable in reward and type.

This framework is useful since we find results about the equilibrium effort and optimal reward

among our environments that depend significantly upon the common objective of the designer or

preference of the contestant. If the contest designer wishes to maximize the expected total effort,

for sufficiently large number of contestants, the optimal reward function decreases in effort, that

is, a larger effort decreases the size of the reward gained by winning. On the other hand, if the

contest designer wishes to maximize the expected highest effort, for any number of contestants, the

optimal reward function may increase in effort. While the possibility of decreasing rewards may
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seem surprising, it occurs since when the designer maximizes total effort, he induces an effort that

depends only on type and not on the number of contestants. However, given this, as the number of

contestants increases, the probability of winning for low effort decreases at a faster rate than that

for higher effort. Thus, the reward of winning at those efforts must be increasing at a faster rate

in order to maintain the same expected payoff for a particular effort. Eventually, this must cause

the reward to be decreasing.

An additional finding is that with multiplicatively separable values, the optimal reward is al-

ways positive, while with additively separable values, it may also be negative. Furthermore, with

multiplicatively separable values, the optimal reward function induces all contestants (even those

with the lowest types) to choose to participate in the contest. On the other hand, the optimal

reward function with additively separable values may limit the number of contestants that choose

to participate in the contest. This can be interpreted as the optimal reward structure serving the

role of entry fees or alternatively reserve prices in the standard contests (or auctions). While we

study the designer choosing the effort-dependent reward structure in a contest, the design that

we find is optimal among all possible contests and when the designer’s objective is total expected

effort, it is optimal over all mechanisms.2

We expand our analysis to allow the designer control of the number of effort-dependent rewards.

Contrary to Moldovanu and Sela (2001), we find that it is not the number of prizes to which rewards

are distributed that matters, but it is only the expected value of the reward. For instance, we present

an example where an optimal design is to give an effort-dependent reward to the loser rather than

the winner of a two-player contest (in such a design, as long as one isn’t the best, putting forth

higher effort increases reward, emulating some scenarios in life). This surprising result further

demonstrates that an effort-dependent reward can be an efficient tool for the contest designer but
2See the end of Section 4 for further discussion.
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its structure as well as its effects are sometimes unusual.

The paper proceeds as follows. In Section 2 we present the model. In Sections 3 and 4, we

analyze the optimal reward when the contest designer wishes to maximize the expected total effort

and the expected highest effort, respectively. In Section 5, we revisit the question of multi-reward

contests and in Section 6 we conclude. The Appendix contains the proofs.

2. The model

¥ Consider n−player, all-pay contests with effort-dependent rewards. Each contestant’s type

θi, i ∈ {1, ..., n}, is independently drawn from the interval [θ, θ], where 0 ≤ θ < θ, according to

the same cumulative distribution function F. We assume that there are no atoms; there is positive

density, f(θ) > 0; and that the hazard rate, f(θ)/(1 − F (θ)), is increasing in θ for all θ ∈ [θ, θ].

While F is common knowledge, each contestant is privately informed about his own type. Each

contestant i produces an observable effort xi and, by doing so, incurs a nonobservable disutility

(or cost) denoted by c(θi, xi), where c : [θ, θ]× R+ → R+ is strictly increasing in x (a higher effort

is more costly), strictly decreasing in θ (higher types have lower costs), and twice continuously

differentiable. We also assume c(θ, 0) = 0 (no effort is costless), cx(θ, 0) = 0 (a small effort is near

costless) and limx→∞ cx(θ, x) > 1 (at some point the marginal cost of effort is strictly larger than

one).3 There are additional conditions assumed on c, which are sufficient to guarantee a monotonic

solution to our problem: cxx > 0, cxθ < 0 for all x > 0 and cθx(θ, 0) = 0, cx2θ ≤ 0, cxθ2 ≥ 0.4

That is, there is a diminishing marginal product (cxx > 0),5 higher types have less of a diminishing

marginal product (cx2θ ≤ 0), and higher types are less averse to increases in effort (cxθ < 0).
3In the language of an all-pay auction, x is the bid and c(θ, x) is the cost of bidding. Since the environment is one

of a contest, we find it semantically simpler to call x the effort (that is, the result of an exertion) and c(θ, x) the cost
of effort (as in, the cost of the exertion itself).

4This sufficiency we will verify later.
5More precisely, this condition implies that the production function associated with this cost function exhibits

diminishing marginal product.
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The contestant i that chooses the highest effort xi wins a reward R(xi), where R : R+ → R

is continuous,6 and values winning in the contest according to the function V (θi, R(xi)), where

V : [θ, θ] × R → R is a twice continuously differentiable function with Vθ ≥ 0.7 This value to

winning can be different from the reward paid by the designer, particularly, since it may include

any psychological gains or additional economic benefits to winning.8

We will consider two specific forms of this value function: multiplicatively separable (mult),

V (θ, R(x)) = θ · R(x), and additively separable (add), V (θ, R(x)) = θ + R(x). The add value

function has the type-dependent component to winning independent of the size of the reward. This

can be the case where there is prestige or status associated with winning (or signal from winning)

that is not derived from the monetary value of the reward. This may be the case with many sports

contests. The mult value function captures the case where the benefit from the monetary value

of the reward is related to type. Such a relationship may exist in technology contests, where a

larger reward attracts more media attention and the ability to capitalize on this extra attention is

increasing in type. It could also simply be that the psychological value to winning depends upon

the size of the reward (or trophy) of winning.

We also consider two possible objectives for the designer: the designer maximizes the expected

value of total effort E[
∑n

i=1 xi] minus the expected reward he must pay out (total), and the

designer maximizes the expected value of the highest effort E[max{xi}] minus the expected reward

he must pay out (highest). The total objective has the designer valuing efforts by all contestants;

this mirrors situations such as promotion contests. The highest object has the designer not
6The assumption of continuity of the reward function is made for simplicity of analysis and our results would still

hold if it is relaxed. Moreover, it can be replaced by the realistic assumption that there is a small amount of noise in
determining the winner.

7The assumption that Vθ ≥ 0 implies that the value to winning may depend upon type and if so contestants with
lower costs also value winning more. The other case where Vθ < 0 can be treated as well, but then the equilibrium
does not necessarily exist given the assumption about the cost function. A step further would have a second signal
for the value function with a joint distribution over both signals. This would complicate analysis considerably.

8For instance, the winners of the X-prize received additional reward from the 10 million prize in the form of a
contract from Virgin to form Virgin Galactic (see www.virgingalactic.com).
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benefiting from the efforts of the losers; this fits scenarios such as technology contests or patent

races. Our two-by-two framework yields four environments, which we denote by total-mult, total-

add, highest-mult, and highest-add.

The timing of decisions is the designer chooses the reward function and afterwards the contes-

tants see their individual types and choose efforts. Each contestant i chooses his effort xi in order

to maximize his expected utility, given his type, the other contestants’ actions and the form of the

reward function.

2 Equilibrium. Consider the equilibrium in the contest that results after the designer sets

the reward function. Denote the equilibrium expected utility (profit) of a contestant of type θ by

π(θ). In a Bayesian equilibrium, the effort function x(θ) chosen by each contestant maximizes his

expected utility given the effort functions chosen by the other contestants. Hence, for each θ, a

symmetric equilibrium effort function x(θ) (assumed to be strictly increasing and continuous with

inverse θ(x)) solves the following profit maximization problem:9

π(θ) ≡ max
x

F (θ(x))n−1 · V (θ,R(x))− c(θ, x). (1)

Proposition 1. Any equilibrium strategy x(θ) is given by the implicit function

F (θ)n−1V (θ, R(x(θ)))− c(θ, x(θ)) =
∫ θ

θ
[F (θ̃)n−1Vθ(θ̃, R(x(θ̃)))− cθ(θ̃, x(θ̃))]dθ̃. (2)

Proof. See the Appendix.

We derived (2) by using the Envelope Theorem to find the RHS of the equation and setting it

equal to the contestant’s problem (1) at the solution. Equation (2) generalizes the solution for a

range of auction mechanisms. For instance, if c(θ, x) = 0 for all x, θ and V (θ, R(x)) = θ − x, we
9These properties are actually induced by the designer’s choice of R(x) as we show later in the Appendix 7.
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have a first-price auction. From (2), we have

F (θ)n−1 (θ − x(θ)) =
∫ θ

θ
F (θ̃)n−1dθ̃

which is consistent with the known solution of a first-price auction.

If c(θ, x) = x for all θ and V (θ, R(x)) = θ for all x, we have a standard all-pay auction. Again

from (2), we have a solution consistent with known results, namely,

F (θ)n−1θ − x(θ) =
∫ θ

θ
F (θ̃)n−1dθ̃.

In order to solve the designer’s problem, we must first choose the designer’s objective. Then, we

must use the fact that a designer’s choice of reward function influences the equilibrium behavior of

the players in the subsequent contest. This allows us to use the solution of the contest equilibrium

to replace the expected rewards the designer must pay out E[R(x(θ))|θ is the highest type] with

a function of x(θ). This converts the designer’s problem from finding the best reward function to

one of finding the optimal induced effort x(θ). Finally, once we have the optimal induced effort,

we can find the reward function R(x) that induces that effort.

3. Maximization of the total effort

¥ In this section, we analyze the case in which the designer wishes to maximize the expected

value of total effort net of the expected reward he must pay out:

n

∫ θ

θ
x(θ)dF −

∫ θ

θ
R(x(θ))dFn. (3)
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The left term of (3) is the expected total effort exerted by the contestants, while the right term is

the designer’s expected payment to the contestant with the highest effort. Due to the difficulty of

solving the contest induced by a designer choosing a reward function, we can only do so, once we

make further assumptions about the value function.

2 Multiplicatively separable case. We consider first the total-mult environment where

the value function is multiplicatively separable, V (θ, R(x)) = θ ·R(x). The equilibrium effort x(θ)

is the solution of the following maximization problem:

arg max
x

F (θ(x))n−1 · θ ·R(x)− c(θ, x).

Equivalently, this equilibrium effort x(θ) is also the solution of the problem

arg max
x

F (θ(x))n−1 ·R(x)− ĉ(θ, x) (4)

where ĉ(θ, x) = c(θ, x)/θ and any solution to this problem is also a solution to the original problem.

Hence, we can instead solve the latter problem. This we call the type-independent case where the

value function does not depend on type, namely,

V (θ, R(x)) = R(x), (5)

and the cost of effort is ĉ(θ, x) = c(θ, x)/θ.10 This new problem is easier to solve and leads to the

following proposition.

10In this case, we only need for c/θ to satisfy our sufficient conditions. Note that if the sufficient conditions hold
for c, they will also hold for c/θ when θ > 0.
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Proposition 2. In the total-mult environment, the optimal reward is given by

R(x) =
(

ĉ(θ(x), x)−
∫ x

0
ĉθ(θ(x̃), x̃)dθ(x̃)

)
/F (θ(x))n−1 (6)

where ĉ(θ, x) = c(θ, x)/θ and θ(x) is the inverse of the equilibrium effort x(θ) which is given by

1 + ĉθx(θ, x(θ))
1− F (θ)

f(θ)
= ĉx(θ, x(θ)). (7)

Proof. See the Appendix.

By using Proposition 2, we derive some properties of the contestants’ equilibrium efforts and

the optimal reward in this environment.

Proposition 3. In the total-mult environment,

1. The equilibrium effort is independent of the number of contestants n.

2. All contestants choose to participate in the contest.

3. The optimal reward is always positive.

4. For large enough n, the optimal reward is decreasing.

Proof. Equations (6) and (7) imply points 1, 2 and 3. The proof of point 4 is proved in the

Appendix.

The main result of Proposition 3 is that for a sufficiently large number of contestants, the

optimal reward function decreases in effort, that is, a larger effort decreases the size of the reward

gained by winning. In the following example, we see that in a contest with as few as six contestants,

the reward function can be decreasing.

Example 1. In the total-mult environment, the cost function is c(θ, x) = x2 and the distribution
of the contestants’ types F is uniform on [0, 1].

From this specification, ĉ(x, θ) = x2/θ and we can rewrite (7) as

1− (
2x(θ)

θ2
)(1− θ) = 2x(θ)/θ.

Thus, the equilibrium effort is

x(θ) =
θ2

2
.
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Consistent with Proposition 3, the optimal effort does not depend upon n. The inverse of the
equilibrium effort is θ(x) =

√
2x. By (6) the optimal reward is

R(x) =
(2x)2−n/2

3
.

For two contestants the optimal reward is R(x) = 2x/3. For four contestants, we have an effort-
independent optimal reward R(x) = 1/3. For six contestants, we have already a decreasing reward
function R(x) = 1/(6x).

Perplexing questions arise from Proposition 3 and this example. First, why would the equilib-

rium effort be independent of the number of contestants: given the all-pay nature of the contest

wouldn’t adding players dissipate individual effort as with a standard all-pay auction? Second, why

would a designer want to reward winning contestants less the harder they work: would this not

dampen effort? Third, even if it is optimal, can the reward ever realistically be decreasing? Finally,

why isn’t it obvious that all the contestants participate?

The answer to the first question is that the designer values all efforts whether or not they

are the highest. This value for individual effort is not based upon the number of contestants.

Furthermore, the cost of maintaining an individual’s effort depends upon the expected payment to

that contestant and does not increase with the number of contestants. Thus, in our model, if the

designer has the tools, he would want to induce efforts independent of n by increasing the reward

R(x) as the number of contestant increases in such a way to keep the equilibrium efforts constant.

With effort-dependent rewards that can be chosen after learning n, the designer has such tools.

If, as in the standard all-pay auction, the designer had to keep the reward for winning constant,

R(x) = R, or could not vary the reward with the number of contestants, the equilibrium efforts

would indeed depend upon n.11

11We see this for a constant reward by looking at the environment of Example 1 (total-mult environment, c(θ, x) =
x2 and F (θ) = θ), for a constant reward R, the equilibrium effort is then given by x(θ)2 = R((n− 1)/n)θn and does
indeed depend upon n. In fact, no matter what reward R the designer chooses, the effort will still depend upon n
since the θn term will remain as long as R > 0.

If the designer could not increase the reward with n, the efforts would disspate. Indeed, Kaplan et al. (2002) solve
the all-pay auction for a fixed variable reward R(x), that is, one not chosen by a designer, and find the equilibrium
efforts do depend upon n.

10



The answer to the second question, why would a designer want to reward winning contestants

less the harder they work, is that the contestant cares about the expected payoff for winning (value

of reward for winning times the chance of winning) rather than simply the reward for winning. As

we see from the example, the expected payoff is

R(x)θ(x) · θ(x)n−1 = (2x)2−n/2/3 ·
√

2x · (
√

2x)n−1 = (2x)2 /3.

This expected payoff is always increasing. From the first question, the designer induces efforts

independent of n. However, given this as the number of contestants increase, the probability of

winning for low effort decreases at a faster rate than that for higher effort. Thus, the reward for

winning at those efforts must be increased at a faster rate. Eventually, this must cause the reward

to be decreasing.

This leads us to the third question. Can reward ever realistically be decreasing in effort? This

is not as unusual as one may first suspect. For example, take contests where the first to achieve

the task gets the reward (such as with innovation contests). It is quite possible that the reward is

increasing over time. For instance, with innovation contests similar to the X-prize, the organizers

may continue to raise funds by finding sponsors. A mathematician proving the Riemann Hypothesis

in 2008 will receive a million dollars from the Clay Mathematics Institute for solving one of the

Millennium Problems. However, it is quite possible that the institute will get an additional sponsor

increasing the prize money to solving the hypothesis in 2009 to say two million dollars. Hence, the

mathematican would be compensated more (in both nominal and present value terms) if he made

the discovery later (and given that others do not make the discovery meanwhile). Why is this a

decreasing reward? Simply that innovating earlier requires a greater effort:12 time and effort go in
12Introducing noise into the production technology for innovation will allow some early innovators to simply be

“lucky” and save effort with an early innovation, but those choosing an earlier expected innovation time will expend
more effort on average for this choice.
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opposite directions.

Finally, we explain the answer to the last question, why isn’t it obvious that all the contestants

participate? In optimal auctions for standard private-value environments (which includes all-pay

auctions) the optimal design is to set a minimum bid. This causes some contestants not to enter

(bid zero). This is because the designer tries to include only those contestants with positive virtual

valuations (marginal revenue). In standard auctions, the virtual valuation of contestant with type

θ is θ − 1−F (θ)
f(θ) . When the types are uniformly distributed on [0, 1], this equals 2θ − 1. As one can

easily see, this can be negative. In our case, the designer can obtain (only) positive virtual rent

from all the contestants. We will go into further detail with this point in the additively separable

case.

To illustrate the answer to the first question further, the independence of the equilibrium effort

in the number of contestants becomes clear if we notice that the optimal reward R(x) in the multi-

plicatively separable environment when the designer values expected total effort is comparable to

the optimal wage contract in a Principal-Agent (PA) model (with n agents and hidden information

about ability) where the principal offers each agent a wage w(x) that depends upon output x (which

can be sold at a price of one). In the PA model the agent’s maximization problem is

max
x

w(x)− ĉ(θ, x). (8)

The principal’s expected payoff given the solution x(θ) of the agent’s problem is the expected output

that he receives (the price of which is one) minus the expected wage that he must pay:

n

∫ θ

θ
[x(θ)− w(x(θ))]dF. (9)

12



The substitution of w(x) ≡ R(x) · F (θ(x))n−1 into (8) and (9) yields the problems of (4) and (3),

respectively.

From the above analysis, we see that there is a competitive solution to the classical PA model.

Instead of offering every agent a wage that depends on his output in the PA model, the principal can

offer the agents a contest where the agent with the highest effort wins a reward that is dependent

upon his output.

While we haven’t performed a general mechanism design analysis, by this equivalence between

our contest in environment total-mult and the PA model, a contest with the optimal effort-

dependent reward is an optimal mechanism.

2 Additively separable case. We now analyze the total-add environment (where the value

function is additively separable, V (θ, R(x)) = θ + R(x).

Proposition 4. In the total-add environment, the optimal reward is given by

R(x) =

(
c(θ(x), x) +

∫ θ(x)

θ∗
[F (θ)n−1 − cθ(θ, x(θ))]dθ

)
/F (θ(x))n−1 − θ(x) (10)

where θ(x) is the inverse of the equilibrium effort x(θ) that is determined by

1 + cθx(θ, x(θ))
1− F (θ)

f(θ)
= cx(θ, x(θ)) (11)

and the cutoff θ∗ is the θ that maximizes the designer’s profit from the set {θ ∈ [θ, θ] : x(θ) −
c(θ, x(θ)) +

(
θ − 1−F (θ)

f(θ)

)
F (θ)n−1 + cθ(θ, x(θ))1−F (θ)

f(θ) = 0} (if the set is empty θ∗ = θ).

Proof. See the Appendix.

The equilibrium here has both qualitative similarities and qualitative differences to the multi-

plicative case (Propositions 2 and 3). We see this from the following proposition.

Proposition 5. In the total-add environment,

1. The equilibrium effort is independent of the number of contestants.
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2. Some contestants may not choose to participate in the contest.

3. The optimal reward is not always positive.

4. For large enough n, the optimal reward is decreasing.

Proof. Equations (10) and (11) imply points 1 and 2. Point 3 is established by the following

example and point 4 is proved in the Appendix.

The results of this proposition are made apparent with the following example.

Example 2. In the total-add environment, the cost function is c(θ, x) = x2/θ and the distribution
of the contestants’ types F is uniform on [0, 1].

By (11) the optimal effort is

x(θ) =
θ2

2
.

Notice that here the optimal effort function does not depend upon n. The cutoff θ∗, however, does
depend upon n as we see by the equation that determines the cutoff:

θ∗2

4
+ 2θ∗n − θ∗n−1 = 0.

For n = 2, this has two solutions: θ∗ = 0 and 4/9. The designer’s profit (from equation (A5) in the
Appendix 7) is given by

2
∫ 1

θ∗

[
θ2

2
− θ3

4
+ (2θ − 1) θ − θ2

4
(1− θ)

]
dθ =

1
2

+ θ∗2(1− 3
2
θ∗).

This implies that the designer will maximize profits by choosing a cutoff of θ∗ = 4/9. By (10) this
yields an optimal reward function of

R(x) =
2x

3
− (2x)1/2

2
− 8 · 29

37(2x)1/2
.

Notice that the expected payment is −1145/4374 which is negative.

From Proposition 5, we see that in the additively separable case as in the multiplicatively

separable case, if the contest designer wishes to maximize the expected total effort, the equilibrium

effort is independent of the number of contestants. Moreover, while not explicit in the example,

for a sufficiently large number of contestants, the optimal reward function in both environments

decreases in effort. The reasons for both of these results is similar to those for the total-mult

environment.
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On the other hand, while in the multiplicatively separable case all contestants participate in

the contest, in the additively separable case some of them may choose to not participate in the

contest, that is, the designer is able to indirectly eliminate contestants by inducing them not to

participate by setting the reward function such that a contestant with a low type will do better by

not participating. Furthermore, reward can be negative.

From this, one may again ponder about the following two questions. First, why is it now optimal

to reduce participation? Second, why would anyone choose an effort where the reward to winning

is negative?

Now, in order to see why it is optimal to eliminate some contestants in the additively separable

case we examine the designer’s payoff, which is given by

n

∫ θ

θ

[
x(θ)− c(θ, x(θ)) +

(
θ − 1− F (θ)

f(θ)

)
F (θ)n−1 + cθ(θ, x(θ))

1− F (θ)
f(θ)

]
dF.

The reward function in this case can limit the participation of players for which the expression

within the integral is negative. To illustrate this possibility, take for example the case where the

cost function does not depend on the contestant type, i.e., c(θ, x) = x. This converts the environ-

ment into the standard auction environment where revenue equivalence holds. In accordance, the

designer’s payoff reduces to
∫ θ
θ

(
θ − 1−F (θ)

f(θ)

)
dFn. (This is possible since (11) holds for any possible

x(θ).) Hence, the designer’s payoff depends only upon which types are included. Since, as with the

standard auction,
(
θ − 1−F (θ)

f(θ)

)
can be negative, some types may be excluded. We also note that

in the multiplicatively separable environment participation is always optimal since the expression

inside the integral there,

x(θ)− ĉ(θ, x(θ)) + ĉθ(θ, x(θ))
1− F (θ)

f(θ)
,

is always positive.
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The answer to the second question, why would anyone choose an effort level where the reward

is negative is simple. The value to winning (the value to the object plus reward), θ + R(x(θ)), is

always positive. For instance, in our example,

θ + R(x(θ)) = θ + R(θ2/2) = θ + θ2/3− θ/2− (8 · 29/37)θ.

At the cutoff, θ∗ = 4/9, we have θ + R(x(θ∗) = 4/81. Since in our example θ + R(x(θ)) is clearly

an increasing function, it is always positive.

Similar to before, under our assumptions in environment total-add, a contest with the optimal

effort-dependent reward is an optimal mechanism in many contexts. However, there are some

contexts where the designer could benefit from additional flexibility. For instance, if we assume

that the mechanism designer can deny a winner of the contest the benefit of θ while still paying

R(x), then our solution would not be the optimal mechanism. This may be realistic in the context of

promotion contests. In this case, a designer may be able to give a raise without giving a promotion.

There R(x) would represent the raise and θ would represent the status and other benefits gained

from the titular promotion. Here, the optimal mechanism will involve minimum effort such that if

the winner achieves this, he will get he promotion plus R(x) and if the minimum is not achieved,

he will receive only R(x). We note that the minimum bid will be set such that type that precisely

bids it is θ∗, where θ∗− 1−F (θ∗)
f(θ∗) = 0. In addition, in contrast to total-add, participation will again

be always optimal as in total-mult. Returning to Example 2, when the θ can be given separately,

the optimal effort is still x(θ) = θ2

2 . However, the minimum bid is set to 1/8 (with θ∗ = 1/2) and

optimal reward is now given by
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R(x) =





c(θ(x),x)−∫ θ(x)
0 cθ(θ,x(θ))dθ

F (θ(x))n−1 = (2x)2−n/2

3 if x < 1
8 ,

c(θ(x),x)−∫ θ(x)
0 cθ(θ,x(θ))dθ+

∫ θ(x)
1/2

F (θ)n−1dθ

F (θ(x))n−1 − θ(x) = (2x)2−n/2

3 +
√

2x
n − (2x)(1−n)/2

2nn if x ≥ 1
8 .

In the following section, the designer wishes to maximize the highest effort and in this case our

model would not necessarily be optimal even in the multiplicatively separable case.13

4. Maximization of the highest effort

¥ Assume now that the designer cares about the expected value of the highest effort instead of

expected total effort. In this case, his expected payoff is given by

∫ θ

θ
[x(θ)−R(x(θ))]dFn. (12)

2 Multiplicatively separable case. When the value function is multiplicatively separable,

the optimal reward is given in the following proposition.

Proposition 6. In the highest-mult environment, the optimal reward is given by

R(x) =
(

ĉ(θ(x), x)−
∫ x

0
ĉθ(θ(x̃), x̃)dθ(x̃)

)
/F (θ(x))n−1 (13)

where ĉ(θ, x) = c(θ, x)/θ and θ(x) is the inverse of the equilibrium effort x(θ) which is determined
by

F (θ)n−1 + ĉθx(θ, x(θ))
1− F (θ)

f(θ)
= ĉx(θ, x(θ)). (14)

Proof. See the Appendix.

As a function of the equilibrium effort, the reward formula where the designer maximizes the
13Even if the designer is restricted to receiving messages only through effort (the mechanism must be all-pay), the

designer may want to employ an asymmetric mechanism that eliminates some contestants independent of type.
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highest effort (13) is the same as in the case where the designer maximizes the total effort (6).

However, since the equilibrium efforts are not identical in both cases (equations (7) and (14) are

not equal) we obtain that the optimal rewards are different.

It is important to notice that in the case when the designer values the expected highest effort,

the optimal reward R(x) in the multiplicatively separable environment is not comparable to any

variable in the classical hidden-information Principal-Agent (PA) model. Indeed, in this case the

properties of the contestants’ equilibrium efforts and the optimal reward are completely different

than their properties when the designer maximizes the expected value of total effort. In particular,

it is shown that in the case when the designer maximizes the expected value of total effort, the

optimal reward function decreases in effort if the number of players is sufficiently large. In this case

where the designer values the highest effort, the optimal reward may be increasing for any number

of players.14

Proposition 7. In the highest-mult environment,

1. The equilibrium effort depends on the number of contestants.

2. All contestants choose to participate in the contest.

3. The optimal reward is always positive.

4. The optimal reward may be increasing for any number of contestants.

Proof. Equations (13) and (14) imply points 1-3. Point 4 is illustrated in the following example.

Example 3. In the highest-mult environment, the cost function is c(θ, x) = x2 and the distribution
of the contestants’ types F is uniform on [0, 1].

Thus ĉ(θ, x) = x2/θ. From this specification, we can rewrite (14) as

θn−1 − (
2x(θ)

θ2
)(1− θ) =

2x(θ)
θ

.

This implies the equilibrium effort

x(θ) =
θn+1

2
.

14In addition, in the multiplicatively separable environment, the equilibrium effort function when the designer
values the expected highest effort is point-wise smaller than the equilibrium effort when the designer values the
expected total effort. Thus, the expected value of the highest effort is smaller when the designer values the highest
effort.
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The inverse of the equilibrium effort is θ(x) = (2x)1/(n+1). By (13) the optimal reward is then

R(x) =
2n + 2

4(2n + 1)
(2x)

n+2
n+1 .

It can be verified that for large n this reward approaches R(x) = x/2.

Notice that the expected highest effort in this case is n/(4n + 2) while the expected highest
effort in the case where the designer maximizes the total effort is always larger and equal to
n/(2n + 4). Thus, the expected payment when the designer maximizes the highest effort must be
smaller than the expected payment when the designer maximizes the total effort, otherwise, there
is a contradiction to the optimality of the reward function in this example.

Also notice that the designer’s profit in this case is
∫ 1

0
[x(θ)−R(x(θ))]dFn =

∫ 1

0
[
θn+1

2
− 2n + 2

4(2n + 1)
(
θn+1

)n+2
n+1 ]dθn =

n

4(2n + 1)
.

This shows that the designer’s profit is increasing in n and approaches 1/8.15

Why is the winning reward now increasing in effort? When the designer valued total effort, a

worker with a lower type was valued independent of the number of contestants; however, here a

lower-type worker has a lower chance of having the highest type when the number of contestants

increase. Hence, his effort decreases in the number of contestants. As we see in the example, this

effort does depend upon n, (x(θ) = θn+1/2). This causes the probability of winning for a given

effort x to approach 2x. This means that we no longer have to compensate for a lower probability

of winning by increasing rewards for lower efforts.

2 Additively separable case. Now we consider the case that the value function is additively

separable.

Proposition 8. In the highest-add environment, the optimal reward is given by

R(x) =

(
c(θ(x), x) +

∫ θ(x)

θ∗
[F (θ)n−1 − cθ(θ(x̃), x̃(θ)]dθ

)
/F (θ(x))n−1 − θ(x) (15)

15The designer’s profits does not always increase in n. For instance, let us say that all types have θ ≈ 1 and reward
and costs are the same as in the example. Since there is little informational rent the designer keeps all the surplus.
Obviously then, the designer does best by limiting participation to one and inducing x(θ) = 1/2.
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where θ(x) is the inverse function of the equilibrium effort x(θ) that is determined by

F (θ)n−1 + cθx(θ, x(θ))
1− F (θ)

f(θ)
= cx(θ, x(θ)) (16)

and the cutoff θ∗ is the θ that maximizes the designer’s profits from the set {θ ∈ [θ, θ] : x(θ)F (θ)n−1−
c(θ, x(θ)) +

(
θ − 1−F (θ)

f(θ)

)
F (θ)n−1 + cθ(θ, x(θ))1−F (θ)

f(θ) = 0} (if the set is empty θ∗ = θ).

The properties of the equilibrium efforts and the optimal reward in this case are derived as in

the previous cases.16

Proposition 9. In the highest-add environment,

1. The equilibrium effort depends on the number of contestants.

2. Some contestants may not choose to participate in the contest.

3. The optimal reward is not always positive.

4. The optimal reward may be increasing for any number of contestants.

Example 4. In the highest-add environment, the cost function is c(θ, x) = x2/θ and the distribu-
tion of the contestants’ types F is uniform on [0, 1].

From this specification, we can rewrite (16) as θn−1 − 2x(θ)(1− θ)/θ2 = 2x(θ)/θ. This implies
the equilibrium effort function

x(θ) =
θn+1

2
.

The inverse function is θ(x) = (2x)1/(n+1). The cutoff equation is given by

θ2n

4
+ 2θn − θn−1 = 0.

For n = 2, the solution of this equation that maximizes profits is θ∗ = 0.486. As n → ∞, we have
the profit maximizing solution as θ∗ → 0.5. The optimal reward is then

R(x) =
2n + 2

4(2n + 1)
(2x)

n+2
n+1 − (2x)

1
n+1

(
n− 1

n

)
− (2x)−

n−1
n+1

[
θ∗n

n
+

θ∗2n+1

4(2n + 1)

]
.

For large n, this reward approaches to the increasing reward function R(x) = x/2− 1.

As in mechanism design, the contestants earn their informational rents and the designer gets

total surplus minus the informational rents. One may ask when the designer’s objective is to
16Similar to before, we note that in the additively separable case, the equilibrium effort function when the designer

values the expected highest effort is point-wise smaller than the equilibrium effort when the designer values the
expected total effort. In addition, the set of types of contestants when the designer values the total effort is larger
(and includes) than the set of types of contestants when the designer values the expected highest effort.
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maximize the highest expected effort, why the designer cannot use a mechanism that elicits types

beforehand and requires only the highest type to expend effort (similar to a first-price auction

which we would not call a contest)? Doing so would save having to “reimburse” losers for their

expenditure and thus be able to increase total surplus since the designer only benefits from the

highest effort. Indeed, in some circumstances, the designer may have this ability, however, there

are many reasons why he may not. For instance, the competition among the players sometimes

is crucial to obtaining the full value to winning. This is clearly the case in any athletic contests.

Furthermore, using a first-price auction may create credibility issues (such as renegotiation); once

others are dismissed, the contestant will gain bargaining power against the designer. Finally, there

could be a learning by doing component to private information. This would be a realistic component

to technological contests.

In this paper, we find the optimal contest design (we distinguish contests from other mechanisms

by their open all-pay nature).17 We can claim it is an optimal design for a contest since we solve for

the optimal induced effort and find a reward structure that induces it. While the reward structure

studied thus far, an effort-dependent reward for first-place, is a suitable mechanism, it is just one of

many optimal reward structures. In the next section, we find a particularly useful characterization

of optimal reward structures.

5. Multiple Rewards

So far, we analyzed the optimal reward when an effort-dependent reward R(x) is awarded only to

the winner. We now extend the analysis to the case of multiple effort-dependent rewards where
17In other words, there can’t be any preselection of contestants, all must be treated equally, and messages sent

to the designer can only be done through expending effort. Formally, the mechanism is a contest if the expected
payment to contestant i is a function only of the efforts, pi(x1, ..., xn) and is symmetric in i, pi(..., xi, ..., xj , ...) =
pj(..., xj , ..., xi, ...). This symmetry also prevents a designer from limiting the number of contestants. In many sit-
uations such as technological contests (or open math problems), it is realistic that the designer would lack this
ability.
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the contestant with the highest effort wins the reward R1(x), the contestant with the second

highest effort wins the reward R2(x), etc., that is, Rk(x) is the reward for the contestant with

the kth-highest effort who exerts an effort of x. The corresponding value functions for having the

kth-highest effort is Vk(θ, Rk
(x)). In this extended environment, we can ask what are the optimal

structures and the optimal number of effort-dependent rewards. Moldovanu and Sela (2001),

using our environmental assumption of convexity of the cost function, show that it may be optimal

to allocate several rewards. Since their rewards were not only fixed but independent of effort,

it is interesting to examine if their result holds in our environments where the designer has more

flexibility. This brings us to the following proposition, in which the second environment corresponds

to that studied in Moldovanu and Sela (2001).

Proposition 10. A multi-reward contest {Ri(x)}i≥1 with equilibrium inverse effort function θ(x) has
ex-ante equivalent payoffs (for both the designer and the contestants) to a single reward contest
R(x) with the same equilibrium inverse effort function if E[Ri(x)|θ(x)] = F (θ(x))n−1R(x) for the
following environments (independent of the objective function of the designer):18

(i) the multiplicative-separable case, when a contestant of type θ with the kth−highest effort
has value of Vk(θ, Rk

(x)) = Rk(x) · θ.
(ii) the independent case (the payoff to winning is independent of θ), when a contestant of type

θ with the kth−highest effort has value Vk(θ, Rk
(x)) = Rk(x).

(iii) the additively separable case, the contestant of type θ with the kth-highest effort has value

Vk(θ, Rk
(x)) =

{
R1(x) + θ if k = 1,

Rk(x) otherwise.

Proof. See the Appendix.

Proposition 10 implies that any monotonic equilibria in an environment with either a single

reward or multiple rewards can be induced in an environment with the other reward structure

simply by defining the rewards such that E[Ri(x)|θ(x)] = F (θ(x))n−1R(x). In addition to having

the same equilibrium effort functions, the ex-ante payoffs are the same with either reward structure.
18The expression E [Ri(x)|θ(x)] is the expected reward of each contestant given the equilibrium bid function. For

example, if there is only one reward, this expected value is F (θ(x))n−1R1(x), and if there are two rewards, this
expected value is F (θ(x))n−1R1(x) + (n− 1)F (θ(x))n−2(1− F (θ(x)))R2(x).
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For this to happen, the three cases ensure that surplus is not created nor destroyed simply by the

mere fact of giving a non first-place reward – there is no intrinsic value to being runner-up.19

The proof of the proposition comes from the fact that both E[Ri(x)|θ(x)] and F (θ(x))n−1R(x)

are substitutable in both the contestant’s expected surplus and the designer’s expected profits.

Their equivalence implies the equivalence of the contestants’ payoffs between the two possible

reward structure. Since the rewards are eliminated by substituting the contestant’s surplus into

the designer’s surplus, they do not appear in or affect the form of the designer’s expected payoff

that we maximize (to solve for the optimal effort). This leads us to the following corollary of the

proposition.

Corollary 1. In all three cases of Proposition 10, there exists an optimal reward structure for
rewards on any particular set of places. Furthermore, for each possible optimal reward, in addition
to the designer’s expected payoff, the contestants’ payoffs and equilibrium effort function are also
the same.

An interesting result of Corollary 1 is that one possible reward structure is that payment from

the designer can be made independent of place. In other words, the first-place winner exerting

effort x receives the same payment as he would if he came in second place. (In case (iii), there

is still an extra value to coming in first.) In the independent case where the designer cares about

total effort, this reduces to the principal-agent solution.

Proposition 10 allows us to easily analyze a range of problems including those with a disadvan-

tage to the winner: everyone may want to try to beat the fastest gunfighter in town, the tallest

building may be a clearer target for terrorism, being the expert academic in a field may invite

more referee reports, etc.20 In the following example we generate a peculiar example of an optimal
19Some other possibilities do not share this property: For example, in the additively separable case if a contestant

of type θ with the i-highest effort receives Ri(x) + θ for all i. In this case, the equivalence would disappear since
giving additional rewards (say of value ε) would create surplus.

20Donald Trump is quoted as saying “Nobody is going to want to live in a building that’s a target,” in reference
to why the proposed 115-story condominium Fordham Spire in Chicago is not economically viable. Note that he is
constructing a mere 92-floor condominium skyscraper there. (July 26, 2005, Associated Press).
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contest with two contestants where there is only a reward for the loser.21

Example 5. Consider the independent case with two contestants where the designer maximizes the
total effort. The cost function is c(θ, x) = x2/θ and F is uniform on [0, 1].

In this example we have shown that the optimal reward function for the winner is R(x) = 2x/3
and the equilibrium effort is given by θ(x) =

√
2x. We then have F (θ(x))n−1R(x) = (2x)3/2/3. One

can maintain the same revenue by giving a reward of zero to the “winner” and an effort-dependent
reward to the loser. This would be set such that (1 − θ(x))R2(x) = (2x)3/2/3. Thus, the optimal
rewards are

R1(x) = 0, R2(x) =
(2x)3/2

3
(
1−√2x

) .

Notice that this reaches infinity as x → 1/2 (this is the effort chosen by the highest type, θ(1/2) = 1),
since there is an almost certain chance of winning and getting paid nothing.

While we examined rewards that depended only on one’s own effort, we can also allow the

rewards to depend upon the vector of efforts (this can be thought of as introducing externali-

ties). For instance, if there are two contestants, the reward to contestant i for winning could be

R(xi, xj) = xi− xj . In much the same manner as the case of multiple rewards, the reward function

is simply a means for inducing the optimal effort. Thus, given induced equilibrium effort x(θ)

and optimal reward function R(x), any multi-effort reward function R(x1, ..., xn) is also optimal if

E[R(x1(θ1), ..., xi, ...xn(θn))] = R(xi) for all xi.

We demonstrate the above by using the environment of example 5. Before we found that the

optimal reward is R(x) = 2x/3 and the equilibrium effort is θ(x) =
√

2x. Using this solution as

a basis, an optimal reward to contestant i for winning can be either R(xi, xj) = xi/3 +
√

2xj/3

or R(xi, xj) = xi −
√

2xj/3 (since E[
√

2xj/3|xj < xi] =
∫ √2xi

0 θ/3dθ = xi/3). From this it is

interesting to see that rewards can be both increasing and decreasing in the opponent’s effort. We

also see that the reward can be negative (if xj = xi − ε = 1/8, then the latter reward function

equals 1/8 + ε− 1/6). This is perhaps surprising since it is the independent case and the value to

winning is equal to the rewards of winning. Hence, even ignoring cost of effort, each contestant still
21We can also easily generate other examples such as a three-player contest where the player with the mid-level

effort gets the reward. Or even, with three players there is a reward for the winner and a consolation prize for the
loser (the mid-level effort player is the only one not getting a reward).
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(weakly) makes a loss (for a particular draw of types). Moreover, even ignoring the benefit from

efforts, the designer makes a profit. Finally, we remark that in the same manner, multiple rewards

can be combined with these multiple effort rewards.

6. Concluding remarks

¥ In this paper, we study the design of contests when the designer has full flexibility over what

reward function to use. We solve our problem of finding the optimal reward by indirect means.

We start by solving for the optimal effort function. This is done by looking at the virtual cost

of increasing effort for a specific contestant type. Then, we solve for the reward that induces this

effort function. Using this method, we analyzed two objective functions for the designer and two

value functions of the contestants. Our results from this analysis are summarized in Table 1.

From Table 1 and the results in section 5, our main findings are as follows. First, the optimal

reward may either increase or decrease in the contestants’ effort. Second, the optimal reward may

also be negative. Third, the optimal reward does not necessarily eliminate participation of the

contestants with the lowest types. Fourth, it does not matter upon how many rewards the optimal

reward is distributed.

The most surprising result is that the reward to winning may be not only increasing, but

decreasing in the efforts. It is easy to envision contests where the reward to winning is increasing

in the results. These bonuses for good performances may be external rewards to winning, extra

payment from the designer, or simply getting the reward sooner. On the other hand, a scenario

where the reward is actually decreasing in effort may not be obvious. However, it does occur in

the case of contests where the reward is increasing over time. This can happen if the money for

winning a contest similar to the X-prize is increased over time by having the organizers continue
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to raise funds from sponsors. The reason that this is in fact a decreasing reward is that inventing

early requires a greater effort. Thus, time and effort are in opposite directions and while the reward

is increasing over time, it is decreasing in effort.

While the environment we study here is restricted to contests, it is possible to use the same

tools to study optimal design with effort-dependent rewards in other environments. For example,

one can study the classic auction mechanisms with effort-dependent rewards. Alternatively, one

can study a hybrid model where only part of the effort is sunk and the rest is expended after a

winner is selected such as in contests for architectural contracts.
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7. Appendix

¥ Proofs to Propositions 1–6, 10 and Corollary 1 follow.

Proof of Proposition 1. Using the envelope theorem on the contestant’s maximization problem
(1) yields

π′(θ) = F (θ)n−1Vθ(θ, R(x(θ)))− cθ(θ, x(θ)).

Assume that all contestants with type θ ≥ θ take part in the auction and that π(θ) = 0. Then by
integration we obtain

π(θ) =
∫ θ

θ
[F (θ̃)n−1Vθ(θ̃, R(x(θ̃)))− cθ(θ̃, x(θ̃))]dθ̃.

From the maximization problem, we also have

π(θ) = F (θ)n−1 · V (θ,R(x(θ)))− c(θ, x(θ)).

Combining these two equations yields the desired result. Q.E.D.

Proof of Proposition 2. Straightforward substitution of (5) into (2) implies that an equilibrium
strategy x(θ) must satisfy

F (θ)n−1R(x(θ))− ĉ(θ, x(θ)) =
∫ θ

θ
−ĉθ(θ̃, x(θ̃))dθ̃. (A1)

Substituting (A1) in the designer’s expected payoff (3) yields the following designer’s problem

max
x

n

∫ θ

θ

[
x(θ)− ĉ(θ, x(θ)) +

∫ θ

θ
ĉθ(θ̃, x(θ̃))]dθ̃

]
dF. (A2)

By using integration by parts, we can rewrite the last term as follows

∫ θ

θ

∫ θ

θ
ĉθ(θ̃, x(θ̃))dθ̃dF =

∫ θ

θ
ĉθ(θ, x(θ))dθ −

∫ θ

θ
F (θ)ĉθ(θ, x(θ))dθ =

∫ θ

θ
ĉθ(θ, x(θ))

1− F (θ)
f(θ)

dF.

Thus, the designer’s problem is

max
x

n

∫ θ

θ

[
x(θ)− ĉ(θ, x(θ)) + ĉθ(θ, x(θ))

1− F (θ)
f(θ)

]
dF.

Since the designer is indirectly choosing x(θ) through the reward function, we can look at the
first-order condition to find the induced optimal effort

1 + ĉθx(θ, x(θ))
1− F (θ)

f(θ)
= ĉx(θ, x(θ)). (A3)

It is straightforward to show that our assumptions on c imply the same assumptions on ĉ = c
θ for

all θ > 0. (The reverse isn’t true.) Now note that 1 + ĉθx(θ, 0)1−F (θ)
f(θ) > ĉx(θ, 0) for all θ > 0. Our
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assumptions also imply that when x increases, the LHS of (A3) decreases and the RHS strictly
increases. The limit has the property that limx→∞ 1 + ĉθx(θ, x)1−F (θ)

f(θ) < limx→∞ ĉx(θ, x). Thus,
a unique interior solution exists. In addition as θ increases (keeping x fixed) the LHS of (A3)
increases and the RHS decreases. Hence, there is a unique strictly increasing solution to this
equation. Furthermore, since ĉ is thrice continuously differentiable, ĉθ2x ĉxθ, ĉx2 , and ĉθx2 are finite
for all interior θ. This then implies that x(θ) is continuous for all θ > 0. We should also note
that second-order conditions are satisfied, since the designer’s problem is strictly concave, because
−ĉxx(θ, x) + ĉθx2(θ, x)1−F (θ)

f(θ) < 0 for all x ≥ 0.

Given the optimal effort x(θ), the optimal reward is obtained by changing variables from θ to
x in equation (A1). Therefore, the optimal reward is simply

R(x) =
(

ĉ(θ(x), x)−
∫ x

0
ĉθ(θ(x̃), x̃)dθ(x̃)

)
/F (θ(x))n−1

where θ(x) is the inverse of x(θ). Q.E.D.

Proof of Proposition 3. Here, we prove point 4 of Proposition 3. The optimal reward given by (6)
can be written as a fraction of two strictly positive functions, z1(x)/z2 (x)n−1 where

z1(x) =
(

ĉ(θ(x), x)−
∫ x

0
ĉθ(θ(x̃), x̃)dθ(x̃)

)
,

z2(x) = F (θ(x)).

The derivative of the reward function is given by

z2 (x)n−2 [z2 (x) z′1(x)− (n− 1)z′2 (x) z1(x)]
z2 (x)2n−2 .

Since by our assumptions z1 (x) , z2 (x) , z′2 (x) are positive and finite, for large enough n, this
derivative must be negative. Q.E.D.

Proof of Proposition 4. The equilibrium strategy x(θ) is given by the implicit function

F (θ)n−1[θ + R(x(θ))]− c(θ, x(θ)) =
∫ θ

θ
[F (θ̃)n−1 − cθ(θ̃, x(θ̃))]dθ̃ (A4)

while the expected payoff of a contestant given this strategy is

π(θ) =
∫ θ

θ
[F (θ̃)n−1 − cθ(θ̃, x(θ̃))]dθ̃.

As before, we can use (A4) to find the reward as a function of the equilibrium effort

R(x) =
(

c(θ(x), x) +
∫ x

0
[F (θ(x̃))n−1 − cθ(θ(x̃), x̃)]dθ(x̃)

)
/F (θ(x))n−1 − θ(x).
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By substituting this reward into the designer’s payoff and using integration by parts, we obtain

n

∫ θ

θ

[
x(θ)− c(θ, x(θ)) + θF (θ)n−1

]
dF − n

∫ θ

θ

∫ θ

θ

[
F (θ̃)n−1 − cθ(θ, x(θ))

]
dθ̃dF

= n

∫ θ

θ

[
x(θ)− c(θ, x(θ)) +

(
θ − 1− F (θ)

f(θ)

)
F (θ)n−1 + cθ(θ, x(θ))

1− F (θ)
f(θ)

]
dF. (A5)

The first-order condition of this yields the optimal effort function

1 + cθx(θ, x(θ))
1− F (θ)

f(θ)
= cx(θ, x(θ)).

As before, our assumptions on c guarantee that the designer’s problem is strictly concave, satisfying
the second-order conditions. The designer also has the option of having a cutoff type in order to
not include lower types for when the expression within the integral is negative. It is important to
notice that this expression within the integral does not necessarily increase in θ. Q.E.D.

Proof of Proposition 5

Here we prove point 4 of Proposition 5. Since the optimal equilibrium effort is the same as
in the multiplicatively separable case when the value function is type-independent, the difference
between the two rewards is that now the reward is larger by

∫ x

0
[F (θ(x̃))n−1dθ(x̃)/F (θ(x))n−1 − θ(x).

The derivative of this with respect to x is

F (θ(x))2n−2θ′(x)− ∫ x
0 [F (θ(x̃))n−1dθ(x̃) · (n− 1)F (θ(x))n−2F ′(θ(x))θ′(x)

F (θ(x))2n−2
− θ′(x)

=
− ∫ x

0 [F (θ(x̃))n−1dθ(x̃) · (n− 1)F ′(θ(x))θ′(x)
F (θ(x))n

< 0.

Thus, the reward is also decreasing for large n. Q.E.D.

Proof of Proposition 6. As in the case of maximization of total effort, we can use equation (A1)
to substitute for F (θ)n−1R(x(θ)) in the designer’s expected payoff (12) and use integration by parts
to simplify. Now the designer’s expected payoff becomes

n

∫ θ

θ

[
x(θ)F (θ)n−1 − ĉ(θ, x(θ)) + ĉθ(θ, x(θ))

1− F (θ)
f(θ)

]
dF. (A6)

The first-order condition of this yields the optimal (profit-maximizing) x(θ)

F (θ)n−1 + ĉθx(θ, x(θ))
1− F (θ)

f(θ)
= ĉx(θ, x(θ)). (A7)

Since Fn−1(θ) is increasing in θ, the same arguments as before guarantees a monotonic solution.
From equation (A1), we find the optimal reward:

R(x) =
(

ĉ(θ(x), x)−
∫ x

0
ĉθ(θ(x̃), x̃)dθ(x̃)

)
/F (θ(x))n−1 (A8)
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where θ(x) is the inverse of x(θ) that satisfies (A7). Q.E.D.

Proof of Proposition 10. With multiple rewards, instead of equations (A1) and (A4), a contes-
tant’s expected surplus equation needs to be written as one of the following two equations (the first
holds for cases (i) and (ii), while the second holds for case (iii)):

E[Ri(x(θ))]− ĉ(θ, x(θ)) =
∫ θ

θ
−ĉθ(θ̃, x(θ̃))]dθ̃,

F (θ)n−1θ + E[Ri(x(θ))]− c(θ, x(θ)) =
∫ θ

θ
[F (θ̃)n−1 − cθ(θ̃, x(θ̃))]dθ̃.

Since E[Ri(x(θ))] = F (θ)n−1R(x(θ)), a contestant’s surplus does not change for a given effort. The
designer’s payoff changes from equations (3) and (12) to the following two formulas, respectively,

n

∫ θ

θ
x(θ)dF − n

∫ θ

θ
E[Ri(x(θ))]dF,

∫ θ

θ
x(θ)dFn − n

∫ θ

θ
E[Ri(x(θ))]dF.

When we use the contestants’ surplus equations to substitute for the expected rewards in the above
two formulas (depending upon the case and whether the designer’s goal is total or highest effort),
we arrive at exactly the same formulas for the designer’s payoff as before: (A2), (A5) and (A6).
Thus, both the induced effort and the respective payoffs will remain the same. Q.E.D.

Proof of Corollary 1. For any {Ri(x(θ))}, one can find a R(x(θ)) such that E[Ri(x(θ))] =
F (θ)n−1R(x(θ)). Furthermore, for any R(x), and nonempty set of places (for example, first place,
second place and fourth place) one can find a {R̃i(x(θ))} such that E[R̃i(x(θ))] = F (θ)n−1R(x(θ))
and R̃i(x) = 0 for all i not in that set. This and Proposition 10 imply that if we find a optimal
reward structure for a particular set of places, we can find the optimal reward structure on another
set of places that yields the same expected payoffs to the designer and contestants (and same
equilibrium effort function). Hence, any of these would be an optimal reward structure overall.
Q.E.D.
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Table 1 of 1

Table 1: Summary of Results

V = θ + R V = θ ·R

Induced effort x(θ) is independent of n x(θ) is independent of n
Total Effort R′(x) < 0 for large n R′(x) < 0 for large n

Reward may be negative Reward is positive
Some stay out of contest All contestants participate

Induced effort x(θ) depends on n x(θ) depends on n
Maximum Effort May have R′(x) > 0 for large n May have R′(x) > 0 for large n

Reward may be negative Reward is positive
Some stay out of contest All contestants participate
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